N2(2023)

ABIS logo
homepage: http://www.applied-business-solutions.eu
Type: Article
Title: Studying the Recurrent Sequence Generated by Power Function using QUATTRO-20 PDF Article
Author: Jelena Kozmina
Orcid: https://orcid.org/0009-0005-5075-5190
Author: Alytis Gruodis
Orcid: https://orcid.org/0009-0008-2989-3283
On-line: 30-December-2023
Metrics: Applied Business: Issues & Solutions 2(2023)28-36 – ISSN 2783-6967.
DOI: 10.57005/ab.2023.2.4
URL: http://www.applied-business-solutions.eu/h23/2023_2_4.html
Abstract. We presented the bifurcational diagram of power function Fi(x) = r·x·(1 – x^2) which could be treated as first approximation of trigonometric function F(x) = r·x·cos x. Using second composite Fi^2(x) in analytical form and solving 8-th degree polynomial equation bifurcational diagram with period doubling 1, 2, 4 was obtained and attractors were established. Analytical solutions of expressions x = Fi^2(x) allows us to establish the fixed point attractors and periodic attractors in interval (-V5,V5). Bifurcation diagram obtained analytically was compared with its aproximate analogue Finite State diagram.
JEL: C25.
Keywords: recurrent sequence; power function; fixed point attractor; periodic attractor; Finite State Diagram; Bifurcation diagram; index of Lyapunov exponent; CobWeb plot.
Citation: Jelena Kozmina, Alytis Gruodis (2023) Studying the Recurrent Sequence Generated by Power Function using QUATTRO-20. – Applied Business: Issues & Solutions 2(2023)28–36 – ISSN 2783-6967.
https://doi.org/10.57005/ab.2023.2.4
References.

1. Bruno Gonpe Tafo, J.; Nana, L.; Tabi, C. B.; Kofané, T. C. (2020) Nonlinear Dynamical Regimes and Control of Turbulence through the Complex Ginzburg-Landau Equation - Research Advances in Chaos Theory IntechOpen - doi:10.5772/intechopen.88053.
2. Tzamal- Odysseas, M. (2014) Energy transfer and dissipation in nonlinear oscillators. PhD theses - Aristotle University of Thessaloniki, Greece, 2014. 3. Elaydi, S. (2005) An introduction to difference equations 3rd ed. - Springer Science: Business Media, Inc., 2005.
4. Devaney , R. L. (2020) A First Course in Chaotic Dynamical Systems. Theory and Experiment. 2nd Edition - Taylor & Francis Group, LLC, 2020.
5. Chen, Y.; Qian, Y.; Cui, X. (2022) Time series reconstructing using calibrated reservoir computing - Scientific Reports 12 (2022) 16318 - https://doi.org/10.1038/s41598-022-20331-3
6. Tronci, S.; Giona, M.; Baratti, R. (2003) Reconstruction of chaotic time series by neural models: a case study - Neurocomputing 55 (2003)581-591 - https://doi.org/10.1016/S0925-2312(03)00394-1.
7. Boutsinas, B.; Vrahatis, M.N. (2001) Artificial nonmonotonic neural networks - Artificial Intelligence 132(2001)1-38 - https://doi.org/10.1016/S0004- 3702(01)00126-6.
8. Bakas, I.; Kontoleon, K.J. (2021) Performance Evaluation of Artificial Neural Networks (ANN) Predicting Heat Transfer through Masonry Walls Exposed to Fire - Applied Science 11 (2021)11435 - https://doi.org/10.3390/app112311435.
9. Gómez-Ramos, E.; Venegas-Mart´?nez, F. (2013) A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series? - Analitika, Revista de analisis estadistico 3 (2013)7-15
10. Kozmina, Y. (2018) Discrete Analogue of the Verhulst Equation and Attractors. Methodological Aspects of Teaching - Innovative Infotechnologies for Science, Business and Education 1(24) (2018) 3-12.
11. Kozmina, Y.; Gruodis, A. (2020) QUATTRO-20: advanced tool for estimation of the recurrent sequences - In: 18th International Conference "Information Tehnologies and Management", April 23-24, 2020, ISMA University of Applied Science, Riga, Latvia.
12. Kozmina, J.; Gruodis, A. (2023) Tool QUATTRO-20 for Examining of the Recurrent Sequencies Generated by Discrete Analogue of the Verhulst Equation. - Applied Business: Issues & Solutions 1(2023)16–29 - https://doi.org/10.57005/ab.2023.1.3.
13. Dosly, O.; Pechancova, S. (2006) Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices - International Journal of Difference Equations 1 (2006) 19–29.
14. Brooke, K.; Saucedo, D.; Xu, C. (2017) Second-Order Linear Recurrence Relations and Periodicity - The Onyx Review: The Interdisciplinary Research Journal 2(2017) 7-12.
15. Farris, M.; Luntzlara, N.; Miller, S.; Lily, S.; Mengxi, W. (2021) Recurrence relations and Benford’s law - Statistical Methods & Applications 797 (2021) 1613-981X - https://doi.org/10.1007/s10260-020-00547-1
16. Bûdienë, G.; Gruodis, A. (2016) Zipf and related scaling laws. 3. Literature overview of multidisciplinary applications (from informational aspects to energetic aspects) - Innovative Infotechnologies for Science, Business and Education ISSN 2029-1035 – 2(21)(2016)12-19.
17. Andrianov, I.; Starushenko, G.; Kvitka, S.; Khajiyeva, K. (2019) The Verhulst-Like Equations: Integrable O?E and ODE with Chaotic Behavior - Symmetry 11 (2019) 1446 - doi:10.3390/sym11121446.
18. Gutierrez, M. R.; Reyes, M.A.; Rosu, H.C. (2010) A note on Verhulst’s logistic equation and related logistic maps- J. Phys. A 43 (2010) 205204.
19. Ragulskis, M.; Navickas, Z. (2011) The rank of a sequence as an indicator of chaos in discrete nonlinear dynamical systems - Communications in Nonlinear Science and Numerical Simulation 16(2011) 2894-2906 - https://doi.org/10.1016/j.cnsns.2010.10.008.
20. Hikihara, T.; Holmes, P.; Kambe, T.; Rega, G. (2012) Introduction to the focus issue: Fifty years of chaos: Applied and theoretical - Chaos 22(2012) 047501 - https://doi.org/10.1063/1.4769035
21. Ditto, W.; Munakata, T. (1995) Principles and Applications of Chaotic Systems - Communications of the ACM 38(1995) 96-102.
22. Nosrati, K.; Volos, C. (2018) Bifurcation Analysis and Chaotic Behaviors of Fractional-Order Singular Biological Systems - In: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Eds. Viet-Thanh Pham, Sundarapandian Vaidyanathan, Christos Volos, Tomasz Kapitaniak - Series: Studies in Systems, Decision and Control, Volume 133 - Springer International Publishing AG 2018.
23. Toker, D.; Sommer; F. T.; D’Esposito, M. (2020) A simple method for detecting chaos in nature - Communications Biology (2020) 3:11 - https://doi.org/10.1038/s42003-019-0715.
24. Fehrle, D.; Heiberger, C.; Huber, J. (2020) Polynomial chaos expansion: Efficient evaluation and estimation of computational models - BGPE Discussion Paper, No. 202, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen und Nürnberg - http://hdl.handle.net/10419/237993
25. Kozmina, Y.; Gruodis, A. (2019) Number generation based on the chaotic sequences - In: The 17th International Scientific Conference "Information Technologies and Management - 2019", April 25-26, 2019, ISMA, Riga, Latvia - Nano Technologies and Computer Modelling (2019)17-18.
26. Alawida, M.; Samsudin, A.; Teh, J. S. (2019) Enhancing Unimodal Digital Chaotic Maps through Hybridization - Nonlinear Dynamics 96 (2019) 601–613 - https://doi.org/10.1007/s11071-019-04809-w
27. Kozmina, J.; Gruodis A. (2020) QUATTRO-20 - WinApi program. - https://github.com/Alytis/QUATTRO-20.