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Introduction
Recurrent sequences can be important in various fields of physics,
chemistry, engineering, and informatics in the context of modeling
of periodic or oscillatory behavior which orccur at visualization of
reaction or engine cycle, cipher/key generation, big data maintening
etc.
Trigonometric functions (sine and cosine) naturally represent an
oscillatory behavior (vibrations, waves, etc) with periodic compo-
nents. Phenomenon of recurrence allows describing the evolution
of complex systems in several dynamical regimes where the charac-
teristic regime parameters repeat or oscillate over time [1, 2]. This is
particularly relevant in audio processing, where signals often exhibit
the repeating patterns.
Recurrent sequences with trigonometric functions can arise in solu-
tions to certain differential equations. These equations may model
physical phenomena where both recurrence and periodicity play a
significant role [3, 4].
Typical tasks of BigData requires the analysis of data collections,
where data sampling was provided over time. Usage of recurrent
functions with trigonometric terms can help capture patterns and
trends that repeat at regular/pseudoregular intervals [5, 6].
Usage of recurrent sequencies with trigonometric terms in Artifi-
cial Neural Network and Machine Learning could be estimated as
the novel implementation of processing of the data sequences [6-
9]. Trigonometric functions can be incorporated into the activation
functions or hidden states of Artificial Neural Networks to represent
the time-domain or temporal dependencies with periodic character-
istics.
Analysis technique is known [10-12]: Finite State Diagram, Bifur-
cation diagram, distribution of index of Lyapunov exponent, Cob-
Web plot for different composites of function F (x): F 2(x), F 3(x),
F 4(x). This solution pathway was shown for classical Verhulst
equation F (x) = r · x · (1 – x) presented in Refs. [10, 11] as stan-
dard manipulation in analytical form using polinomial behaviour.
Unfortunately, for recurrent trigonometric functions, possibility to
express the composites of high order F 2, F 3, F 4 could be realized
in approximate form only.
This work is devoted to understanding the specific context in
which recurrent sequences generated by the trigonometric functions
F (x) = r· x· cos x could be replaced with corresponding poly-
nomial function Φ(x) = r · x · (1 – x2) Depending on the field

and application, these functions can provide accurate and efficient
dynamical representations of real-world phenomena with periodic
behavior.

1. Literature review
Recurrent relations. Recurrent relation expresses the relationship
between the terms of a sequence, when the previous term prede-
terms the behaviour of the current. Usage of the mentioned recur-
sive technique is popular due to simplicity to control the genera-
tion. Dosly et al [13] presented so called trigonometric transforma-
tion technique for recurrence relations. Brooke et al [14] described
several forms of second-order linear Recurrent relation, which sati-
fies the requested features: jump from a sequence with period k to
second-order linear Recurrent relation. In that case, three distinct
non-trivial periods will be generated. Farris et al [15] proved, that
for certain families of functions f and g, a sequence generated by a
recurrent relation

an+1 = f(n) · an + g(n) · an−1 (10)

is Benford for all initial values. Importance of Benford law [16] is
well known. It describes a natural phenomenon from many real-
world datasets. It reflects a pattern that emerges in naturally oc-
curring numerical data, such as physical constants, parameters of
biological systems, etc. By analysing this distribution, it is possible
to distinguish between sequences related to the naturally occuring
system and formula-generated data.
Indicators of chaos. Generally, pure chaotic manner of recurrent
relation could be established from natural processes only [16]. As
mathematical models, the Lorenz system, the Henon map as well
as logistic map are well known [17]. Each of these models has
its own set of equations. Andrianov et al [17] use various vari-
ants of Verhulst-like ordinary differential equations and ordinary
difference equations. Several examples of deterministic discretiza-
tion and chaotic continualization (procedure is based on Padé ap-
proximants) are analysed. Characteristic parameters of chaotic dy-
namical systems as the Lyapunov exponents and the Lyapunov di-
mensions were presented and discussed.
Gutierrez et al [18] analyzed Verhulst logistic equation and a cou-
ple of forms of the corresponding logistic maps. In particular, they
presented the map

xn+1 − xn = r · xn · (1 − xn+1) (11)
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or in usual form:

xn+1 = (1 + r)xn

1 + r · xn
= 1 − 1 − xn

1 + r · xn
(12)

which is identical to the logistic equation from the standpoint of the
general Riccati solution.

Ragulskis et al [19] presented the concept of the Hankel rank of a
solution of the discrete nonlinear dynamical system. Computation
of ranks of subsequences of solutions helps to identify and assess
the sensitivity of the system to initial conditions: stability or con-
vergence properties.

Hikihara et al [20] presented explicit historical review of the sys-
tems of deterministic chaos. They claim that unpredictability is due
to sensitive dependence on initial conditions caused by rapid diver-
gence of neighbouring solutions. This property is quite common in
nonlinear differential equations with three or more variables, invert-
ible maps in two or more dimensions, and all non-invertible maps.
Chaotic dynamics is locally expansive in one or more directions in
phase space and contractive in the remaining dimensions. Only in
the last 50 years, the significant applications are presented for in-
vestigation in the biological and life sciences. Analytical, geometri-
cal, and computational methods have been developed to detect and
characterize chaotic sets, and experiments have confirmed that they
appear in a variety of real systems.

Ditto et al [21] presented description if investigations in chaotic sys-
tem, in particular, problems of Artificial Intelligence, such as Arti-
ficial Neural Network, fuzzy logic, and genetic algorithms can be
employed together with chaotic systems (e.g., neural networks and
chaos, or neural networks and fuzzy logic and chaos.) Components
of hybrid systems complement each other creating new approaches
to solve problems.

Nosrati et al [22] investigated the biological systems in the real
world using the singular system theory and fractional calculus.
Some fractional-order singular biological systems are established,
and some qualitative analyses of proposed models are performed. It
was established that presence of fractional order changes the stabil-
ity of the solutions and enriches the dynamics of system. In compar-
ison to standard model, fractional-order singular biological systems
exhibit instability phenomena (in term of bifurcation).

Generally, classic chaos-detection tools are highly sensitive to meas-
urement noise. Toker et al [23] presented novel tool which combine
several classical tools into an automated processing pipeline, and
show that this pipeline can detect the presence (or absence) of chaos
in noisy recordings, even for difficult cases.

Fehrle et al [24] presented polynomial chaos expansion method for
series expansion of uncertain model inputs. Suitability of polyno-
mial chaos expansion for computational economics is discussed.

Cryptography. Recurrent relations are important in cryptographic
applications because the generation of pseudorandom numbers play
a crucial role in cryptographic protocols and algorithms. Estima-
tion of sequence quality of pseudorandom numbers [25] must be
done due to security restrictions. Alawida et al [26] presented a hy-
brid chaotic which uses cascade and combination methods as a non-
linear chaotification function. Analysis shows that enhanced maps
have a larger chaotic range, low correlation, uniform data distribu-
tion and better chaotic properties. Several simple pseudorandom
number generators are designed based on a classical map and its
enhanced variant.

2. Sequence generated by power function
We would like to study the properties of sequence

xt+1 = F (xt), t = 0, 1, 2, . . . , (13)

where
F (x) = r · x · cos x (14)

for different values of parameter r. Anticipating the difficulties
awaiting us, let us start with the approximation of the function cos x
using MacLaurin series. The explicit form the Maclaurin series of a
function cos x is presented below:

cos x =
∞∑

n=0

(−1)n

(2n)! x2n = 1 − x2

2 + x4

24 − x6

720 + . . . . (15)

The Maclaurin series is used to create a polynomial function

cos x ≈ 1 − x2

2 . (16)

Using polynomial function G(x)

G(x) = r · x ·
(

1 − x2

2

)
(17)

we generate the sequence

xt+1 = r · xt ·
(

1 − x2
t

2

)
, t = 0, 1, 2, . . . . (18)

Transforming Eq.(18)

xt+1√
2

= r · xt√
2

·
(

1 −
(

xt√
2

)2)
(19)

and using the substitution
xt√

2
→ xt (20)

leads us to the sequence

xt+1 = r · xt · (1 − x2
t ), (21)

or
xt+1 = Φ(xt), (22)

where
Φ(x) = r · x · (1 − x2). (23)

The function Φ(x) reaches the maximum value 2r

3
√

3 on the segment
[–1,1] at the point x= 1√

3 and the minimum value – 2r

3
√

3 on the seg-
ment [–1,1] at the point x=– 1√

3 . So function Φ(x):[–1,1]→[–1,1]
if ∣∣∣ 2r

3
√

3

∣∣∣ ≤ 1. (24)

This fact imposes restriction on r:

r ∈
[

− 3
√

3
2 ,

3
√

3
2

]
,

3
√

3
2 ≈ 2.598 < 2.6. (25)

3. Fixed point attractors
We know [10,12] that if we want to find fixed point attractor of the
sequence xt+1=Φ(xt) then we have to solve the equation x=Φ(x).
The function Φ(x) has to be a contracting map in a closed interval
and absolute value of the derivative of function Φ(x) calculated at
the solution of equation x = Φ(x) have to be less then 1.
We find the fixed points of function Φ(x) by solving the equation

x = r · x · (1 − x2). (26)
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This equation has three solutions:

x = 0, x = ±
√

r − 1
r

. (27)

Now we calculate the derivative of Φ(x):

dΦ(x)
dx

= r · (1 − 3x2). (28)

At point x=0 ∣∣∣∣∣dΦ
dx

∣∣∣
x=0

∣∣∣∣∣ = |r|. (29)

If |r|<1 then point x=0 must be titled as fixed point attractor.
Another two solutions of equation x=Φ(x) are x=±

√
r−1

r
.∣∣∣∣∣dΦ

dx

∣∣∣
x=±

√
r−1

r

∣∣∣∣∣ =
∣∣∣r ·

(
1 − 3r − 1

r

)∣∣∣ =
∣∣∣3 − 2r

∣∣∣, (30)

|3 − 2r| < 1 ⇔ 1 < r < 2. (31)

It means that points

x = ±
√

r − 1
r

(32)

are the fixed point attractors for 1<r<2. Note if r=1.5 then

x = ±
√

r − 1
r

= ±
√

1.5 − 1
1.5 = ±

√
1
3 ≈ ±0.57735269 (33)

and ∣∣∣∣∣dΦ
dx

∣∣∣
x=±

√
1
3

∣∣∣∣∣ = 3 − 2 · 1.5 = 0. (34)

Figs. 1, 2, 3 represent graphical solutions of two functions: y = x
and y = Φ(x) at different r: r=1.5, r=1.9, r=2.2 respectively. For
r=1.5 (Fig. 1), three crossing points are present, but only two of
them x=±

√
1
3 ≈0.58 are fixed point attractors (tangent lines are

parallel to x axis). For r=1.9 (Fig. 2), three crossing points are
present, but only two of them x=±

√
9

19 ≈0.69 are fixed point at-
tractors. (tangent lines are not parallel to x axis). For r=2.2 (Fig.
3), three crossing points are present, including x=±

√
6

11 ≈0.74, but
none of them are fixed point attractors. Value r=2.2 is out of previ-
ously established interval 1<r<2.

4. Periodic attractors
We know that

xt+2 = Φ(xt+1) = Φ(Φ(xt)) = Φ2(xt), (35)

where
Φ(x) = r · x · (1 − x2) = r · (x − x3). (36)

Let us express the second order composite Φ2(x):

Φ2(x) = Φ(Φ(x)) = r ·
(

r · (x − x3) −
(
r · (x − x3)

)3
)

= (37)

= r2 · x · (1 − x2) ·
(

1 − r2 · x2 · (1 − x2)2
)

. (38)

Let us find the fixed points of the function Φ2(x). To find them we
solve equation x=Φ2(x):

x = r2 · x · (1 − x2) ·
(

1 − r2 · x2 · (1 − x2)2
)

. (39)

Fig. 1. y = x and y = Φ(x) at r=1.5 (interval 1<r<2). Three crossing
points, but only two of them (approximate values – 0.58 and 0.58) are
fixed point attractors (tangent lines are parallel to x axis).

Fig. 2. y = x and y=Φ(x) at r=1.9 (interval 1<r<2). Three crossing
points, but only two of them (approximate values – 0.69 and 0.69) are
fixed point attractors.

Fig. 3. y = x and y = Φ(x) at r=2.2 (out of interval 1<r<2).
Three crossing points, but none of them are fixed point attractors.
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Table 1. Horner’s scheme for z=r–1.
1 –3r 3r2 –r3–r r2–1

+ + + +
r–1 ↓ r–1 –2r2+r+1 r3–1 –(r2–1)

= = = =
1 –2r–1 r2+r+1 –r–1 0

Table 2. Horner’s scheme for z=r+1.
1 –2r–1 r2+r+1 –r–1

+ + +
r+1 ↓ r+1 –r2–r r+1

= = =
1 –r 1 0

One solution is x=0. To get the other solutions we have to solve the equation

r2 · (1 − x2) ·
(

1 − r2 · x2 · (1 − x2)2
)

= 1. (40)

We transform it to the form of 8th-power equation:

r2 · (1 − x2) ·
(

1 − r2 · x2 · (1 − 2x2 + x4)
)

= 1, (41)

(1 − x2) ·
(
r2 − r4x2 + 2r4x4 − r4x6)

= 1, (42)

r4x8 − 3r4x6 + 3r4x4 − r2(r2 + 1)x2 + r2 − 1 = 0. (43)

We know if Φ(x) = x then
Φ2(x) = Φ(Φ(x)) = Φ(x) = x. (44)

It means that the solutions of the equations Φ(x) = x are the solutions of the equations Φ2(x)=x. Let us use substitution rx2=z, then we have
to solve equation

z4 − 3rz3 + 3r2z2 − r(r2 + 1)z + r2 − 1 = 0. (45)

Φ(x) = x for x = ±
√

r−1
r

, hence z = rx2 = r − 1 is the root of the equation

z4 − 3rz3 + 3r2z2 − r(r2 + 1)z + r2 − 1 = 0. (46)

We use Horner’s scheme presented in Table 1 and get the third power equation

z3 − (2r + 1)z2 + (r2 + r + 1)z − r − 1 = 0. (47)

Let us check z = r + 1 using Horner’s scheme again - see Table 2. Having applied the Horner scheme we were convinced that z = r + 1 is a
solutions of Eq.(47). Now we have to solve the second power equation

z2 − rz + 1 = 0. (48)

The solutions of this equations are

z = r ±
√

r2 − 4
2 . (49)

We got four solutions of equation
z4 − 3rz3 + 3r2z2 − r(r2 + 1)z + r2 − 1 = 0, (50)

z = r − 1, z = r + 1, z = r ±
√

r2 − 4
2 . (51)

These four solutions give us eight solutions of Eq.(43). Note that we used substitution rx2=z, hence x2=z/r, and

x1,2 = ±
√

r − 1
r

, x3,4 = ±
√

r + 1
r

, x5,6,7,8 = ±

√
r ±

√
r2 − 4

2r
. (52)

To check which of these points are attracttors we need to count the value of first derivative of Φ2(x) and make sure that at each of these points
belongs to the interval (-1,1). For function

Φ2(x) = r2 ·
(

(x − x3) − r2(x − x3)3
)

(53)
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let’s calculate the first derivative with respect to x:

dΦ2(x)
dx

= r2 · (1 − 3x2) ·
(

1 − 3r2x2 · (1 − x2)2
)

. (54)

For solution x1,2

x2
1,2 = r − 1

r
, 1 − 3x2

1,2 = 3 − 2r

r
, (1 − x2

1,2)2 = 1
r2 , 1 − 3r2x2 · (1 − x2)2 = 3 − 2r

r
, (55)

then
dΦ2(x)

dx

∣∣∣
x=±

√
r−1

r

= (3 − 2r)2. (56)

The first derivative of Φ2(x) calculated at points x1,2 have to be less than 1:

dΦ2(x)
dx

∣∣∣
x=±

√
r−1

r

= (3 − 2r)2 < 1. (57)

This takes place if r∈(1,2). Thus we have established that points

x1,2 = ±
√

r − 1
r

(58)

are fixed point attractors if r∈(1,2).
Solutions

x3,4 = ±
√

r + 1
r

(59)

is defined if r<–1. Similarly we can calculate that

dΦ2(x)
dx

∣∣∣
x=±

√
r+1

r

= (3 + 2r)2 < 1 (60)

if r∈(–2,–1). Hence, points x3,4 are fixed point attractors if r∈(–2,–1).
To simplify the assessment of the derivative of the function Φ2(x) at the points

x5,6,7,8 = ±

√
r ±

√
r2 − 4

2r
(61)

we will use Eq.(40)
r2 · (1 − x2) · (1 − r2 · x2 · (1 − x2)2) = 1 (62)

from which these solutions were obtained. We can transform this equation

−r2 · x2 · (1 − x2)2 = 1
r2 · (1 − x2) − 1 (63)

and substitute it into expression of first derivative of Φ2(x) with respect to x. For x = x5,6,7,8 we get

dΦ2(x)
dx

∣∣∣
x=±

√
r±

√
r2−4

2r

= r2 · (1 − 3x2) · (1 − 3r2x2 · (1 − x2)2) = (64)

= r2 · (1 − 3x2) ·
( 3

r2 · (1 − x2) − 2
)

= (65)

= (1 − 3x2)(3 − 2r2 + 2r2x2)
1 − x2 . (66)

We have to solve the inequality ∣∣∣∣∣dΦ2(x)
dx

∣∣∣
x=±

√
r±

√
r2−4

2r

∣∣∣∣∣ < 1. (67)

If x∈(–1,1) then 1–x2>0. For x = x5,6,7,8 we get Ineq.(68)

−1 + x2 < 3 − 2r2 − 9x2 + 8r2x2 − 6r2x4 < 1 − x2 (68)
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which leads us to following system of inequalities:{
1 − r2 − 4x2 + 4r2x2 − 3r2x4 < 0,
2 − r2 − 5x2 + 4r2x2 − 3r2x4 > 0.

(60)

For

x5,6 = ±

√
r +

√
r2 − 4

2r
(61)

we have

x2 = r +
√

r2 − 4
2r

. (62)

Substitute Eq.(62) into first inequality of system - Ineq.(60):

1 − r2 − 2 · r +
√

r2 − 4
r

+ 2r(r +
√

r2 − 4) − 3
2(r2 + r

√
r2 − 4 − 2) < 0, (63)

2 − 1
2r2 − 2

√
r2 − 4

r
+ 1

2r
√

r2 − 4 < 0, (64)

r(4 − r2) − (4 − r2)
√

r2 − 4
r

< 0, (65)

(4 − r2)(r −
√

r2 − 4)
r

< 0. (66)

If r>2 then r–
√

r2 − 4 > 0 and 4–r2 < 0, hence r∈(2,+∞).
If r<–2 then r–

√
r2 − 4 < 0 and 4–r2 < 0, hence r∈(–∞,–2).

Substitute Eq.(62) into second inequality of system Ineq.(60):

2 − r2 − 5 · r +
√

r2 − 4
2r

+ 2r(r +
√

r2 − 4) − 3
2(r2 + r

√
r2 − 4 − 2) > 0, (67)

5 − r2 − 5
√

r2 − 4
r

+ r
√

r2 − 4 > 0, (68)

(5 − r2) · (r −
√

r2 − 4)
r

> 0. (69)

If r>2 then r–
√

r2 − 4 > 0. From Ineq.(69) follows that 5–r2 > 0. This takes place if r∈(2,
√

5).
If r<–2 then r–

√
r2 − 4 < 0. From Ineq.(69) follows that 5–r2 > 0. This takes place if r∈(–

√
5,–2).

So we got that the points

x5,6 = ±

√
r +

√
r2 − 4

2r
(70)

are periodic attractors if r∈(–
√

5,–2)∪(2,
√

5).
Let’s go back to the system of inequalities of Ineq.(60). For

x7,8 = ±

√
r −

√
r2 − 4

2r
(71)

we have

x2 = r −
√

r2 − 4
2r

. (72)

Substitute Eq.(72) it into first inequality Ineq.(60):

1 − r2 − 2 · r −
√

r2 − 4
r

+ 2r(r −
√

r2 − 4) − 3
2(r2 − r

√
r2 − 4 − 2) < 0, (73)

2 − 1
2r2 + 2

√
r2 − 4

r
− 1

2r
√

r2 − 4 < 0, (74)

r(4 − r2) + (4 − r2)
√

r2 − 4
r

< 0, (75)

(4 − r2)(r +
√

r2 − 4)
r

< 0. (76)

If r>2 then r+
√

r2 − 4 > 0 and 4–r2 < 0, hence r∈(2,+∞).
If r<–2 then r+

√
r2 − 4 < 0 and 4–r2 < 0, hence r∈(–∞,–2).

Substitute Eq.(72) it into second inequality of Ineq.(60):

2 − r2 − 5r −
√

r2 − 4
2r

+ 2r(r −
√

r2 − 4) − 3
2(r2 − r

√
r2 − 4 − 2) > 0, (77)
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Fig. 4. Bifurcation diagram for recurrent sequence
xt+1 = r· xt ·(1 – x2

t ) at the interval (–
√

5,
√

5).

5 − r2 + 5
√

r2 − 4
r

− r
√

r2 − 4 > 0, (78)

(5 − r2) · (r +
√

r2 − 4)
r

> 0. (79)

If r>2 then r+
√

r2 − 4 > 0. From Ineq.(69) follows that 5–r2 > 0.
This takes place if r∈(2,

√
5). If r<–2 then r+

√
r2 − 4 < 0. From

Ineq.(69) follows that 5–r2 > 0. This takes place if r∈(–
√

5,–2).
So we got that the points

x7,8 = ±

√
r −

√
r2 − 4

2r
(80)

are periodic attractors if r∈(–
√

5,–2)∪(2,
√

5).
Thus, we have established that points

x5,6,7,8 = ±

√
r ±

√
r2 − 4

2r
(81)

are periodic attractors if r∈(-
√

5,-2)∪(2,
√

5).
For recurrent sequence xt+1 = r ·xt· (1 – x2

t ) the bifurcation di-
agram at the interval (−

√
5,

√
5) was depicted as presented in Fig.

4. Bifurcation diagram with period doubling 1, 2, 4 was obtained
in analytical form solving 8-th degree polynomial equation. Strong
expressed period doubling is presented at points r=1 and r=2.
Figs. 5, 6, 7, 8 represent graphical solutions of two functions y = x
and y = Φ2(x) at different r: r=2.0, r=2.2, r=2.23, and r=2.3 re-
spectively. For r=2.0 (Fig. 5), five crossing points are present, but
zero periodic attractors. For r=2.2 (Fig. 6), nine crossing points are
present, but four of them are periodic attractors. For r=2.23 (Fig.
7), nine crossing points are present, but four of them are periodic
attractors. For r=2.3 (Fig. 8), nine crossing points are present, but
none of them are periodic attractors.

Fig. 5. y = x and y = Φ2(x) at r=2. Five crossing points, Fig. 6. y = x and y = Φ2(x) at r=2.2. Nine crossing points,
but zero periodic attractors. four of them are periodic attractors.

Fig. 7. y = x and y = Φ2(x) at r=2.23. Nine crossing points, Fig. 8. y = x and y = Φ2(x) at r=2.3. Nine crossing points,
four of them are periodic attractors. but none of them are periodic attractors.
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Fig. 9. Finite State Diagram of sequence xt+1 = r · xt · (1 − x2
t ),

t=0, 1, 2, . . . . Values in interval (0;1) (top branch) were generated us-
ing x0=0.3, and values in interval (-1;0) (bottom branch) were generated
using x0=–0.3.

Fig. 10. Finite State Diagram (top) and distribution of Lyapunov expo-
nent index (bottom) of recurrent sequence xt+1 = r·xt ·cos xt,
t=0, 1, 2, . . . , x0 = 0.5.

Fig. 11. Finite State Diagram (top) and distribution of Lyapunov expo-
nent index (bottom) of recurrent sequence xt+1 = r·xt·(1 – x2

t ),
t=0, 1, 2, . . . , x0 = 0.5.

5. Approximation methods for visualization
Initial estimation of recurrent sequence properties could be done
using previously presented tool QUATTRO [27] where several be-
haviours such as Finite State Diagram and of Lyapunov exponent

index are presented as the fingerprints of recurrent relations. Fig.
9 represent the Finite State Diagram generated using recurrent se-
quence xt+1 = r ·xt ·(1−x2

t ). Values in interval (0;1) (top branch)
were generated using initial value x0=0.3, and corresponding values
in interval (–1;0) (bottom branch) were generated using x0=–0.3.
Figs. 10 and 11 represent the Finite State Diagram and distribu-
tion of Lyapunov exponent index λ(x0) of two recurrent relations
xt+1 = r · xt · cos xt, and xt+1 = r · xt · (1 − x2

t ), t=0, 1, 2,
. . ., respectively. In both cases, initial value x0 = 0.5. Both Finite
State Diagrams look quite similar. Their different ranges of values
are explained by the normalization of the scales, see Eq.(20).
Fig. 11 (bottom) represents the distribution of Lyapunov Exponent
index:

λ(x0) = lim
t→∞

(1
t

t−1∑
i=0

ln
∣∣Φ′(xi)

∣∣ )
. (82)

At r=1.5, value of distribution λ(x0) tends to –∞ which indicates
the absence of chaotic dependence on initial x0. Distribution of Lya-
punov Exponent index λ(x0) characterizes the behaviour of chaotic
dynamics as well as various forms of stabilization or synchroniza-
tion. Positive value of Lyapunov exponent index indicates chaotic
behaviour of the sequence according to sensitive dependence on ini-
tial x0.
Figs. 12, 13 represent CoWeb plots of the recurrent sequence
xt+1 = r · xt ·(1 – x2

t ), t=0, 1, 2, . . ., x0 = 0.5, when r1=1.9,
r2=2.2, r3=2.26, r4=3.0. Different character of sequence conver-
gence could be established. 50 iterations is enougth to describe the
trending manner. Fig. 12a represents visualization of the fixed point
attractor (r1=1.9). Figs. 12b and 13a represent visualization of two
types of periodic attractors (period doubling 2 for r2=2.2 and period
doubling 4 for r3=2.26). For r3=3.0, chaotic dependence occurs -
see Fig. 13b.

a) r1=1.9; b) r2=2.2.
Fig. 12. CoWeb plot of recurrent sequence xt+1 = r· xt · (1 − x2

t ),
t=0, 1, 2, . . ., x0 = 0.3. 50 iterations were used.

a) r3=2.26; b) r4=3.0.
Fig. 13. CoWeb plot of recurrent sequence xt+1 = r· xt · (1 − x2

t ),
t=0, 1, 2, . . ., x0 = 0.3. 50 iterations were used.
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Conclusions
By analysing of recurrent sequence generated by trigonometric
function F (x) = r · x · cos x some problems arise related to sec-
ond composite F 2(x) due to the complexity of expressions. Using
MacLaurin approximation for function cos x, the dynamic behav-
ior of the recurrent sequence was studied in the same manner as
discrete analogue of Verhulst equation [10]. We presented the bifur-
cation diagram for recurrent sequence generated by power function
Φ(x) = r· x· (1 – x2). Function Φ(x) and its second composite
Φ2(x) were used. Analytical solutions of equation x = Φ2(x) al-
lows us to establish the fixed point attractors and periodic attractors
in the interval (–

√
5,

√
5). Bifurcation diagram with period dou-

bling 1, 2, 4 was obtained in analytical form solving 8-th degree

polynomial equation and compared with Finite State diagram as an
aproximate analogue.
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