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Introduction
Stochastic processes are present in many fields of biology (popu-
lation dynamics, host-parasite interactions), sociology (growth of
population), economics (market activity), cryptography, steganog-
raphy etc. [1,2]. For population dynamics, there is never enough in-
formation to understand fully a population amount and dynamics of
the surrounding influence (affection) [3]. This means that contem-
porary modeling emphasizes uncertainty by incorporating stochas-
ticity [3,4]. In many cases, stochastic behaviour is very complicated,
and unique non-trivial solutions could be reached in approximate
form, using for example entropy approach [5] only. As Bertel et al
[6] pointed out, chaotic phenomena can appear in many dynamical
systems which could be characterized by following conditions: non-
linear behaviour and evolution progress (as expression of recursive
nature). Historical overview of dynamical progress problem made
by Bacaer [7] contains several fields, in particular, pandemic activity
[8], meteorological approach [9], predator–prey system etc.

Large number of different dynamic systems could be described
using recurrence relations [10]. Possibility to define the rule-based
sequence allows us generate the following term as a function of the
previous term. From large set of recurrence relations, one of the
classical examples [7] is well-known Logistic equation or Verhulst
equation

x′ = r · x · (1 − x). (1)
Discrete form of Logistic equation (Discrete analogue of Verhulst
equation, also Logistic map) allows to generate the sequence of
terms as the function of the preceding terms for certain population
analysis:

xt+1 = r · xt · (1 − xt), t = 0, 1, 2, ..., (2)

where xt represents the current term and parameter r>0 represents
the coefficient of proportionality characterizing, for example, the
rate of population growth [10-11].

Evolution of physical/social/biological systems must be esti-
mated in the framework of convergence behaviour, and primary im-
portance of such task is related to obtaining the various dynamical
regimes of the certain system.

For functional generated behaviours, several mathematical tech-
niques could be used for visualization of sets, estimation of evolu-
tion types, next-step prognosis and future guessing.

Firstly, xy or xyz plot of generated sets allows us to establish
the character of distribution: attracting or chaotic behaviour [12-
13]. Secondly, the bifurcation diagram shows the values to which
the sequence asymptotically approaches depending on the parameter
(fixed points, periodic orbits or chaotic attractors) [14, 10]. Thirdly,
xy graphical distribution generated as the CobWeb Plot corresponds
to Bifurcation diagram. Fourthly, distribution of Lyapunov index al-
lows to establish the critical points of reswitching between regimes
[15-16]. Present operations require exact generation of items and
representation according to all requested parameters.

This work is devoted to describing the functional possibilities of
the advanced tool QUATTRO-20 [17] which was created for teach-
ing purposes to explore Discrete analogue of Verhulst equation in
user-friendly manner:

1) to plot Bifurcation diagram;
2) to plot the map for first derivative of first, second, third and

fourth compositions of F (x);
3) to plot distribution of Lyapunov index;
4) to plot CobWeb plot;
5) to solve x=F (x) graphically.
6) to generate a recurrent sequence of requested amount.

1. Description of dynamic system
According to Eq.(2), Discrete analogue of Verhulst equation or lo-
gistic map represents quadratic function F (x) at certain r:

F (x) = r · x · (1 − x), (3)

when r∈(0;4) [11,7]. Historically, this is perhaps the most studied
function. For standard growth model, different approaches could be
used starting from classical [7] up to more complicated. For ex-
ample, Kalman [13] presented a solution of Discrete analogue of
Verhulst equation using matrix algebra technique.
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1.1. Convergence behaviour of dynamic system
In mathematics, a fixed point of a function is an element of the function’s domain that is mapped to itself by the function. Accordingly, x∗ is a
fixed point of the function F (x) if

F (x∗) = x∗. (4)

Let us express the second composition F 2:
F 2(x) = F (F (x)), (5)

third composition F 3,
F 3(x) = F (F (F (x))), ... , (6)

n-th composition F n,
F n(x) = F (F n−1(x)), n = 3, 4, ... . (7)

Do not get confused because notation F 2(x) means the composition according to Eq.(5) but not square of F (x).
Using fixed point notation,

F 2(x∗) = F (F (x∗)) = F (x∗) = x∗, (8)

F 3(x∗) = F (F 2(x∗)) = F (x∗) = x∗. (9)

It follows that
F n(x∗) = x∗, n = 2, 3, ... . (10)

We use this fact when discussing the fixed points of the equation:

x = F n(x), n = 2, 3, ... . (11)

Note that the set of fixed points of the function F (x) is contained in the set of fixed points of the function F 2(x), and the set of fixed points of
the function F n−1(x) is contained in the set of fixed points of the function F n(x), n=3, 4, ... .
Convergence condition. Let’s consider the equation

x = F (x). (12)

Function F is a contracting map in a closed interval I∈R if F meets two following conditions.
1. F :I→I , where I is a closed interval. If x∈I , then F (x)∈I .
2. F is the contraction on this interval. It means that some L∈(0;1) exists, such that inequality∣∣F (x) − F (x′)

∣∣ ≤ L ·
∣∣x − x′∣∣ (13)

is valid for any x, x′∈I .
Then, according to the contraction mapping principle, for any initial value x0∈I , the sequence (xt), t=0, 1, 2, ... , defined by the condition
xt+1=F (xt), converges to the value x∗ such, that x∗=F (x∗). It means that x∗ is a solution of equation x=F (x). Whether the sequence (xt)
converges to x∗ or not depends on the value of F ′(x)|x=x∗ . Condition 2 will be done, if∣∣F ′(x)|x=x∗

∣∣ < 1. (14)

If for sufficiently large numbers t the members of the sequence (xt) are close enough to a point x∗, then the point x∗ attracts this sequence, and
x∗ is an attractor.

1.2. Attractors
In [11], a Discrete analogue of the Verhulst equation

xt+1 = r · xt · (1 − xt), t = 0, 1, 2, ... , (15)

was considered and several results related to the convergence were discussed. This is a special case of the sequence

xt+1 = F (xt) (16)

where
F (x) = rx(1 − x). (17)

We have studied Eq.(15) for various values of the parameter r in interval [0;4] [11]. Initially, we have considered the sequence Eq.(16) and
solved following equation:

x = F (x). (18)

To do this, we passed to the limit in Eq.(15), found the exact solutions of equation

x = r · x · (1 − x) (19)

and then explored them.
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Two solutions of Eq.(19) are presented below:

x∗
1 = 0, x∗

2 = r − 1
r

. (20)

These two points become the attractor if following condition is satisfied:∣∣∣∣∣dF (x)
dx

∣∣∣
x=x∗

1,2

∣∣∣∣∣ < 1, (21)

where
dF (x)

dx
= r − 2rx. (22)

For first solution x∗
1

dF (x)
dx

∣∣∣
x=x∗

1

= r, (23)

|r| < 1. (24)

The solution x∗
1 is the fixed point attractor for 0<r<1.

For second solution x∗
2

dF (x)
dx

∣∣∣
x=x∗

2

= 2 − r, (25)

|2 − r| < 1. (26)

The solution x∗
2 is the fixed point attractor for 1<r<3. Detail analysis and explanations are presented in [11, 6, 18].

For interval 3<r<4 we have considered the sequence

xt+2 = F (xt+1) = F (F (xt)) = F 2(xt) (27)

and solved the equation
x = F 2(x) (28)

when
F 2(x) = r2x(1 − (r + 1)x + 2rx2 − rx3). (29)

To do this, we passed to the limit in Eq.(27), found the exact solutions of equation

x = r2x(1 − (r + 1)x + 2rx2 − rx3) (30)

and then explored them.
We got two additional solutions [11]:

x
∗(2)
3,4 = 1 + r ±

√
r2 − 2r − 3
2r

. (31)

These two points become the periodic attractor if following condition is satisfied:∣∣∣∣∣dF 2(x)
dx

∣∣∣
x=x

∗(2)
3,4

∣∣∣∣∣ < 1, (32)

where
dF 2(x)

dx
= r2(1 − 2(r + 1)x + 6rx2 − 4rx3). (33)

In [11], an example of Discrete analogue of Verhulst equation was presented and discussed. Behaviour of the first derivative of F 2(x) with
respect to x at the points x

∗(2)
3,4 was estimated numerically when r=3.4 using approximate values. In present work, mentioned situation is

supplemented with calculations in a general form.
Calculating the expression of first derivative of F 2(x) with respect to x

dF 2(x)
dx

= r2(1 − 2(r + 1)x + 6rx2 − 4rx3) (34)

at the points

x
∗(2)
3 = 1 + r +

√
r2 − 2r − 3
2r

, x
∗(2)
4 = 1 + r −

√
r2 − 2r − 3
2r

, (35)

we get

dF 2(x)
dx

∣∣∣
x=x

∗(2)
3,4

= r2
(

1−2(r+1)
(

r + 1 ±
√

r2 − 2r − 3
2r

)
+6r

(
r + 1 ±

√
r2 − 2r − 3
2r

)2
−4r

(
r + 1 ±

√
r2 − 2r − 3
2r

)3)
= (36)
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= r2−(r2+r)(1+r±
√

r2 − 2r − 3)+3(r2+r)(r−1±
√

r2 − 2r − 3)−(1+r)(r±
√

r2 − 2r − 3)+1)(r±
√

r2 − 2r − 3)−1) = (37)

= r2 − (r2 + r)(1 + r ±
√

r2 − 2r − 3) + 3(r2 + r)(r − 1 ±
√

r2 − 2r − 3) − (1 + r)(2r2 − 2r − 4 ± 2r
√

r2 − 2r − 3) = (38)

= r2 −
(

r(1 + r)2 ± (((((((((
(r2 + r)

√
r2 − 2r − 3

)
+ 3(r2 + r)(r − 1) ± 3(((((((((

(r2 + r)
√

r2 − 2r − 3 −
(

(1 + r)(2r2 − 2r − 4)±

± ((((((((((
2(r2 + r)

√
r2 − 2r − 3

)
= r2 − r(1 + r)2 + 3(r2 + r)(r − 1) − (1 + r)(2r2 − 2r − 4) = −r2 + 2r + 4.

(39)

Interestingly, the result for both points x
∗(2)
3 and x

∗(2)
4 is the same:

dF 2(x)
dx

∣∣∣
x=x

∗(2)
3,4

= −r2 + 2r + 4. (40)

To find out for which r the condition ∣∣∣∣∣dF 2(x)
dx

∣∣∣
x=x

∗(2)
3,4

∣∣∣∣∣ < 1 (41)

is satisfied, we need to solve quadratic inequality ∣∣−r2 + 2r + 4
∣∣ < 1. (42)

Solution of Ineq.(42):{
r2 − 2r − 4 < 1
r2 − 2r − 4 > −1 ⇔

{
r2 − 2r − 5 < 0
r2 − 2r − 3 > 0 ⇔

{
r ∈ (1 −

√
6; 1 +

√
6)

r ∈ (−∞; −1) ∪ (+3; +∞) ⇔ r ∈ (1 −
√

6; −1) ∪ (3; 1 +
√

6). (43)

In our case r>0 then Ineq.(41) is satisfied if r∈(3; 1+
√

6). Both solutions x
∗(2)
3 and x

∗(2)
4 are the periodic attractors for 3<r<1+

√
6.

Note that in partial case, when r=3.4, there are four points of intersections of the graph of the function F 2(x) with the line y=x:

x∗
1 = 0, x∗

2 = 12
17 ≈ 0.706, x∗

3 = 1
17(11 −

√
11) ≈ 0.452, x∗

4 = 1
17(11 +

√
11) ≈ 0.842. (44)

Graphical solution of Eq.(30) is presented on Fig. 1: y=x and y=F 2(x) for r=3.4, where

F 2(x) = 11.56x(−3.4x3 + 6.8x2 − 4.4x + 1). (45)

Tangents at points of intersection at x∗
3 and x∗

4 are parallel.
Fig. 2 represents the Bifurcation diagram for interval 0<r<1+

√
6 constructed from functional expressions of x∗. For exact expressions,

Eq.(20), Eq.(35) were used. Period-doubling point is presented at r=3.0. Note, that 3.44948974278<1+
√

6<3.45.

Further we need exact expression for functions F 3(x) and F 4(x) and for derivatives of these functions. Let us calculate the F 3(x) as
F 2(F (x))=F 2(rx − rx2):

F 3(x) = r2(rx − rx2) − r3(rx − rx2)2 − r2(rx − rx2)2 + 2r3(rx − rx2)3 − r3(rx − rx2)4 (46)

or in the form convinient for calculating the derivative

F 3(x) = −r7x8 +4r7x7 −2r6(3r +1)x6 +2r6(2r +3)x5 −r4(r3 +6r2 +r +1)x4 +2r4(r2 +r +1)x3 −r3(r2 +r +1)x2 +r3x. (47)

Fig. 1. y=x and y=F 2(x) for r=3.4. Fig. 2. Dependence of the attractor points x∗ on parameter r, r∈(0; 1+
√

6).
Graphical solution of Eq.(30). Bifurcation diagram. Period-doubling point at r=3.0.
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The function F 3(x) can also be written as a factorization:

F 3(x) = r3x(1 − x)(rx2 − rx + 1)(r3x4 − 2r3x3 + r2(r + 1)x2 − r2x + 1). (48)

Now we can calculate the derivative of F 3(x):

dF 3(x)
dx

= −8r7x7+28r7x6−12r6(3r+1)x5+10r6(2r+3)x4−4r4(r3+6r2+r+1)x3+6r4(r2+r+1)x2−2r3(r2+r+1)x+r3. (49)

Function F 4(x) can be calculated as F 3(F (x))=F 3(rx − rx2):

F 4(x) = −r7(rx − rx2)8 + 4r7(rx − rx2)7 − 2r6(3r + 1)(rx − rx2)6 + 2r6(2r + 3)(rx − rx2)5−

−r4(r3 + 6r2 + r + 1)(rx − rx2)4 + 2r4(r2 + r + 1)(rx − rx2)3 − r3(r2 + r + 1)(rx − rx2)2 + r3(rx − rx2).
(50)

F 4(x) represents the sexteenth-order polinomial with respect to x:

F 4(x) = −r15x16 + 8r15x15 − 4r14(1 + 7r)x14 + 28r14(1 + 2r)x13 − 2r12(1 + 3r + 42r2 + 35r3)x12+
+ 4r12(3 + 9r + 35r2 + 14r3)x11 − 2r11(3 + 17r + 45r2 + 70r3 + 14r4)x10+
+ 2r11(15 + 30r + 60r2 + 42r3 + 4r4)x9 − r8(1 + r + 6r2 + 61r3 + 70r4 + 90r5 + 28r6 + r7)x8+
+ 4r8(1 + r + 6r2 + 16r3 + 13r4 + 9r5 + r6)x7 − 2r7(1 + 4r + 4r2 + 18r3 + 18r4 + 11r5 + 3r6)x6+
+ 2r7(3 + 5r + 5r2 + 12r3 + 5r4 + 2r5)x5 − r5(1 + r + 7r2 + 7r3 + 7r4 + 6r5 + r6)x4+
+ 2r5(1 + r + 2r2 + r3 + r4)x3 − r4(1 + r + r2 + r3)x2 + r4x

(51)

Now we can calculate the derivative of F 4(x):

dF 4(x)
dx

= −16r15x15 + 120r15x14 − 56r14(1 + 7r)x13 + 364r14(1 + 2r)x12 − 24r12(1 + 3r + 42r2 + 35r3)x11+

+ 44r12(3 + 9r + 35r2 + 14r3)x10 − 20r11(3 + 17r + 45r2 + 70r3 + 14r4)x9 + 18r11(15 + 30r + 60r2 + 42r3 + 4r4)x8−

− 8r8(1 + r + 6r2 + 61r3 + 70r4 + 90r5 + 28r6 + r7)x7 + 28r8(1 + r + 6r2 + 16r3 + 13r4 + 9r5 + r6)x6−

− 12r7(1 + 4r + 4r2 + 18r3 + 18r4 + 11r5 + 3r6)x5 + 10r7(3 + 5r + 5r2 + 12r3 + 5r4 + 2r5)x4−

− 4r5(1 + r + 7r2 + 7r3 + 7r4 + 6r5 + r6)x3 + 6r5(1 + r + 2r2 + r3 + r4)x2 − 2r4(1 + r + r2 + r3)x + r4

(52)

The Discrete Analogue of the Verhulst equation (Eq.(15)) is interesting due to the following circumstances: for mentioned sequence at
different values of the parameter r, a set of different attractors (fixed point attractor, periodic attractor, chaotic attractor) could be obtained.
Methodologically, modelling tasks constructed by means of mentioned equation enable to understand the chaotic behaviour in real complicated
forms of global complexity [19]. To analyse the behaviour of the sequence, a wide mathematic apparatus is used. Understanding the processes
is facilitated using graphic dependencies.

It is necessary to point out that chaotic behaviour of the model system corresponding to the real system depends on the method precision [4].
Sensitivity of the model on initial conditions requires the detailed analysis of the stationary as well as dynamic behaviour.

1.3. Index of Lyapunov exponent
Schuster [20] uses Lyapunov spectrum for the system with many degrees of freedom. Many exponents express the sensitivity of the system
with respect to different modes.
We consider the sequence

xt+1 = F (xt), t = 0, 1, 2, ... , (53)

where F (x)=rx(1 − x). Requested sequence could be written as x0, x1, x2, x3, ... , xt, ... , where

x1 = F (x0), (54)

x2 = F (x1) = F (F (x0)) = F 2(x0), (55)

x3 = F (x2) = F (F (F (x0))) = F 3(x0), ... , (56)

xt = F (xt−1) = F t(x0). (57)

At a closely adjacent point (x0+ε), we construct a similar sequence

x0 + ε, F (x0 + ε), F 2(x0 + ε), F 3(x0 + ε), ... , F t(x0 + ε), ... . (58)

Let’s introduce an average coefficient eλ(x0), which shows how the distance between points changes in one iteration. Here λ(x0) is known as
an index of Lyapunov exponent [20-21]. Accordingly, we can write that
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∣∣F (x0 + ε) − F (x0)
∣∣ ≈ εeλ(x0), (59)∣∣F 2(x0 + ε) − F 2(x0)

∣∣ ≈ εeλ(x0) · eλ(x0) = εe2λ(x0), (60)∣∣F 3(x0 + ε) − F 3(x0)
∣∣ ≈ εe2λ(x0) · eλ(x0) = εe3λ(x0), ... , (61)∣∣F t(x0 + ε) − F t(x0)

∣∣ ≈ εetλ(x0). (62)

From the last expression Eq.(62) we get

etλ(x0) ≈

∣∣F t(x0 + ε) − F t(x0)
∣∣

ε
, (63)

tλ(x0) ≈ ln

∣∣F t(x0 + ε) − F t(x0)
∣∣

ε
, (64)

λ(x0) ≈ 1
t

ln

∣∣F t(x0 + ε) − F t(x0)
∣∣

ε
. (65)

Passing to the limit at ε→0 and t→∞ we get the correct formal expression for λ(x0):

λ(x0) = lim
t→∞

(1
t

ln lim
ε→0

∣∣F t(x0 + ε) − F t(x0)
∣∣

ε
= lim

t→∞

(1
t

ln

∣∣∣∣∣dF t(x)
dx

∣∣∣∣
x=x0

∣∣∣∣∣ )
. (66)

Now we use the chain rule:

dF 2(x)
dx

∣∣∣∣
x=x0

= dF (F (x))
dx

∣∣∣∣
x=x0

=
(

dF (F (x))
dF (x) · dF (x)

dx

)∣∣∣∣
x=x0

= F ′(x1) · F ′(x0), (67)

dF 3(x)
dx

∣∣∣∣
x=x0

= dF (F 2(x))
dx

∣∣∣∣
x=x0

=
(

dF (F 2(x))
dF 2(x) · dF 2(x)

dx

)∣∣∣∣
x=x0

= F ′(x2) · F ′(x1) · F ′(x0), ... , (68)

dF t(x)
dx

∣∣∣∣
x=x0

=
t−1∏
i=0

F ′(xi). (69)

Finally, we can use two forms of index of Lyapunov exponent:

λ(x0) = lim
t→∞

(1
t

ln
t−1∏
i=0

∣∣F ′(xi)
∣∣ )

(70)

or

λ(x0) = lim
t→∞

(1
t

t−1∑
i=0

ln
∣∣F ′(xi)

∣∣ )
. (71)

Distribution of Lyapunov index characterizes the behaviour of chaotic dynamics as well as various forms of stabilization or synchronization
[15]. Positive value of Lyapunov index indicates chaotic behaviour of the sequence according to sensitive dependence on initial x0. A negative
value of it indicates absence of chaotic dependence on initial x0.
General question could be formulated as follows: is a given system periodic or “chaotic”? And if so, how chaotic? [22, p.293]. Chaotic
behaviour of dynamic system could be estimated using index of Lyapunov characteristic exponent λ(r) which gives the rate of exponential
divergence related to the initial condition. Distribution of Lyapunov index express the behaviour of period-double route which tends to chaos
manner. For discrete analog of Verhulst equation when F (x)=rx(1-x) we have three situations: a) λ<0 in periodic regime, b) λ=0 period-
doubling (at bifurcation point), c) λ>0 in chaotic regime.

Distribution of index of Lyapunov exponent is just one type of spectra which can be associated with a linear, time-varying system [23, p.730].

2. Advanced tool QUATTRO-20
For learning purposes, program package an advanced tool QUATTRO-20 [17] was created and tested. Classical recurrent sequence generated
using Discrete Analogue of Verhulst equation, xt+1=F (xt), where F (x)=rx(1-x) was used as a model sequence. Second composition F 2(x),
third composition F 3(x), fourth composition F 4(x) and first derivatives of F (x), F 2(x), F 3(x), F 4(x) with respect to x were considered
and visualized.
Main goals of QUATTRO-20 could be formulated as follow:

i) estimation of the quantity and quality of recurrent sequence in digital and graphical form;
ii) estimation of convergence or chaos behaviour of recurrent sequence.

Several visualization methods such as Bifurcation diagram, distribution of index of Lyapunov exponent and CobWeb plot (see Table 1) are
included in the package.
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Table 1. QUATTRO-20. Visualization methods.
N Routine Formula Algorithm
1. Bifurcation diagram Eq.(2) Table 2
2. Map of first derivative - Table 3
3. Distribution of Lyapunov index Eq.(71) Table 4
4. Cobweb plot - Table 5
5. Graphical solution Eq.(19) -
6. Generation of recurrent sequence Eq.(2) Table 2

Bifurcation diagram. Fig. 3 represents the main window
of QUATTRO-20 which contains related dependencies: Bifurcation
diagram for xt+1=rxt(1-xt) (top left), distribution of correspond-
ing Lyapunov exponent (bottom left) (argument r∈(0; 4) in both
cases). CobWeb plot corresponds the cut of Bifurcation diagram
when r=3.6 (top right). For easy visualization, state marker (red
vertical line) at r=3.6 is presented in Bifurcation diagram and dis-
tribution of Lyapunov exponent. Graphical solution (top right) of
Eq. x=3.6·x(1-x) related to CobWeb plot is presented in numerical
form (bottom right): x∗

1=0, x∗
2=0.723. Fig. 4 represents partial case

of Fig. 3, when argument r∈(3.79; 3.91) and state marker is fixed at
rfix=3.846.

Bifurcation diagram, also Finite-State diagram (previous term
presented in [10, 18]), also Feigenbaum plot (pioneering term from
7th decade of XX century, used in [10, 14]) enable the visualization
of bifurcation theory. Generally, Bifurcation diagram must repre-
sent distribution of the attractor points x∗ on parameter r expressed
in analytical dependencies. The solution x∗

1 is the fixed point attrac-
tor for 0<r<1, x∗

2 - for 1<r<3 - see Eq.(20). Solutions x
∗(2)
3 and

x
∗(2)
4 are the periodic attractors for 3<r<3.45 - see Eq.(35). "Pure"

expressed Bifurcation diagram is presented in Fig. 2. For exact so-
lution of Eq. x=F 4(x) at interval 3.45<r<3.54 is necessary to solve
the 16th-order polynomial equation. Unfortunately, this solution is
very complicated, resource-wasting and difficult. Then, for interval
3.54<r<4.0 is necessary to solve equations containing high-order
polynomials. This exact routine could be replaced using approxi-
mation technique only.

For any recurrent sequence, several algorithms could be real-
ized: for example, Feigenbaum plot presented in [10, p.652], [24]
etc. Table 2 represents simplified algorithm BifurcationDiagram
presented in Java style which was realized in QUATTRO-20. Sev-
eral values must be passed to method BifurcationDiagram: x0, iT ,
rF rom, rUntil, rStep. Initial value x0 could be established by user
from interval (0; 1). Practically, values very close to 0 or very close
to 1 are not acceptable due to necessity to pass the big number of
initial items. We used default value x0=0.3.

Number of iterations iT allows to generate the requested amount

Table 2. QUATTRO-20. Algorithm BifurcationDiagram.
void BifurcationDiagram(double x0, int iT,
  double rFrom, double rUntil, double rStep)
{

double xCur, xNext,rr;
for (rr=rFrom; rr<=rrUntil; rr+=rStep)
{

xCur = x0;
for (int i=0; i<iT; i++)
{

xNext = rr * xCur * (1.0 - xCur);
xCur = xNext;

}
}

}

Table 3. QUATTRO-20. Algorithm F1Map.
void F1Map(double x0, int iT,
  double rFrom, double rUntil, double rStep)
{

double xCur, xNext, xDer, rr;
for (rr=rFrom; rr<rUntil; rr+=rStep)
{

xCur = x0;
for (int i=0; i<iT; i++)
{

xDer = rr * (1.0 - 2.0 * xCur);
xNext = rr * xCur * (1.0 - xCur);
if (( 0.0<xDer)&&(xDer<1.0))

DrawPoint(rr,xNext,"red");
else if ((-1.0<xDer)&&(xDer<0.0))

DrawPoint(rr,xNext,"green");
else

DrawPoint(rr,xNext,"blue");
xCur = xNext;

}
}

}

of sequence items to receive the distribution of stable manner as well
as chaotic. Default value is equal to iT =5000 but could be increased
according to user needs.

Parameter r could be presented in interval: from initial value
0<rF rom<4 until final value 0<rUntil≤4, rF rom<rUntil. Step
rStep predetermines the quantity of data saturation in Bifurcational
diagram and is related to the width of interval (rF rom;rUntil). De-
fault value rStep=0.1 could be decreased according to user needs.

Bifurcation diagram could be titled as some sort of fingerprints
of recurrent sequence. We can see interval r∈(0;3.54) where small
number of final states is present (one, two, four). Starting from
r=3.54 up to r=4.00, number of final states rapidly increases with
period doubling (chaotic states occur).

Map of first derivative. In addition, Bifurcation diagram was
re-examined due to convergence condition [25]. It was interesting
for us to get the domain in which the first derivative of F , F 2, F 3,
F 4 with respect to x satisfies the following conditions:∣∣∣∣dF (x)

dx

∣∣∣∣ < 1, (72)

∣∣∣∣dF n(x)
dx

∣∣∣∣ < 1, n = 2, 3, 4. (73)

Table 3 represents an algorithm F1Map. Several values must be
passed to method F1Map: x0, iT , rF rom, rUntil, rStep. First loop
is devoted to parameter r which varies from rF rom until rUntil

using step rStep. Second loop is devoted to iterations from 0 to iT
(step 1). In inner loop, two loop values will be calculated:

a) xnext using the current value xcur , which represents an item
of F (x), according to Eq.(17) and

b) xder using the current value xcur , which represents an item
of first derivative of F , according to Eq.(22).

Using received values xder , decision about point colouring in Bifur-
cation diagram must be made: for interval (0;1) - in red, for (-1;0)
- green, else - blue. In case of F 2, F 3, F 4, similar algoritms were
used. For F 2, xnext argument will be calculated using Eq.(29),
xder - Eq.(33). For F 3, xnext argument will be calculated using
Eq.(47), xder - Eq.(49), For F 4, xnext argument will be calculated
using Eq.(51), xder - Eq.(52).

Fig. 5 represents the realization of convergence conditions: map
of first derivative of F (x), F 2(x), F 3(x), F 4(x) with respect to x
(from top to bottom). Parameter r∈(0, 4] with step 0.01 is presented
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Table 4. QUATTRO-20. Algorithm LE.
double LE(double x0, int iT,
  double rFrom, double rUntil, double rStep)
{

double xCur, xNext, xDer, xVal, rr;
double lambda, dSum;
for (rr=rFrom; rr<rUntil; rr+=rStep)
{

xCur = x0;
dSum=0.0;
for (int i=0; i<iT; i++)
{

xNext = rr * xCur * (1.0 - xCur);
xDer = rr * (1.0 - 2.0*xCur);
xVal = ln(abs(xDer));
dSum +=xVal;
xCur = xNext;

}
lambda = dSum / iT;
return lambda;

}
}

at horizontal axis and x∈(0;1) on vertical axis. Red area represents
the interval where values of corresponding derivative are positive
and less than 1, green area – are negative and greater than –1 (for
both case convergence condition is satisfied) and blue area – all
the rest values (convergence condition is unsatisfied). Information
about convergence was passed to the Fig. 6: Bifurcation diagram
for xt+1=rxt(1-xt) was coloured according to value of convergence
for F (x), F 2(x), F 3(x), F 4(x). Figs. 7,8 represent partial case of
Figs. 5,6, when argument interval was squeezed: r∈(3.4;4.0).

Inner structure of Bifurcation diagram could be analysed using
additional approaches. The distribution of points is inhomogeneous,
it is possible to notice several areas where the concentration of
points is higher. Fig. 8 represents the intersection of two chaotic
branches at special point whose coordinates are as follows: r≈3.68,
x≈0.73. This particular point is called the first Misiurewicz point
[26]. The value of calculated Misiurewicz point is equal to A, and
corresponding ordinate XA:

A = 3.67857351042832226... , (74)

XA = 0.728155493653961819... . (75)
Distribution of Lyapunov index. Chaotic behaviour of dy-

namic system could be estimated using Lyapunov index λ(x0)
which gives the rate of exponential divergence related to the ini-
tial condition - Eq.(71). For detailed explanation, see [21, p.96]
Table 4 represent an algorithm LE which was realized in QUATTRO-
20. Several values must be passed to method LE: x0, iT , rF rom,
rUntil, rStep. Actually, Eq.(71) represents summation when param-
eter t→∞. Practically, parameter t could be reduced to 100..500.
Sum of natural logarithm of absolute value of xder at current xcur

will be divided by iT value, number of iterations. Distribution of
Lyapunov index λ(x0) in requested interval of r is presented in Fig.
3 (bottom left) partial case in Fig. 4 (bottom left).

For stable fixed points (periodic mode) at r∈(0;3.45), λ(x) value
is negative. For special points r=1 and r=3, λ(x)→0. Bifurcation
point (period-doubling mode) could be established using condition:
λ(x)=0. For r∈(3.45; 4.00), λ(x) is positive (chaotic mode). The
distribution of the Lyapunov index complements the evaluation of
the type of recurrent sequence which was done using the Bifurca-
tion diagram only. Three modes: chaotic, period-doubling and peri-
odic - can be evaluated regardless of the precision of the calculation
technique [27].

CobWeb plot. A CobWeb plot, or Verhulst diagram (previous
term) represents an graphical method to find the fixed points of se-
quence. Problem could be formulated as follows. Fixed points may
not be found analytically for some maps due to different circum-
stances [2]. In such case, CobWeb diagram is useful to determine
the fixed points in the xy plane and their convergence characters [28,
p. 417]. Construction and interpretation of CobWeb plot is widely
described in [11].

Let us consider two functions y=x and y=rx(1-x). CobWeb plot
will be generated for fixed r. Table 5 represents an algorithm Cob-
Web. Several values must be passed to method CobWeb: x0, rr,
iT . Number of iterations, iT , previously defined by user (from sev-
eral hundreds to several thousands), allow to generate the requested
number of point pairs (x,y). Each iteration contains four points,
which allow to draw two vertical lines and two horizontal lines in
presented order.

Let us consider the initial pair (x0, y0) as starting point. Let
x0=0.3 (default value), let y0=0 (start from x axis). One loop of
iteration contains four routines:

1) calculation of value y1=F (x0), drawing a vertical line from
(x0; y0) to the intersection with the parabola (x0; y1);

2) passing of value x1=y1, drawing a horizontal line from
(x0; y1) to the intersection with line (x1; y1);

3) calculation of value y0=F (x1), drawing a vertical line from
(x1; y1) to the intersection with the parabola (x1; y0);

4) passing of value x0=y0, drawing a horizontal line from
(x1; y0) to the intersection with line (x0; y0).

Figs. 3,4 represent CobWeb plots at fixed r which corresponds
the current distributions of states in Bifurcation diagram. Program
QUATTRO-20 allows to draw all generated lines (from 0 until iT )
as well as requested lines only (from iT 0 until iT ). Fig. 4 repre-
sents CobWeb plot where mentioned situation was realized: only
part of final iterations are significant to estimate non-chaotic closed-
to-order mode of distribution. The red vertical line on the Bifurca-
tion diagram (at r=3.6) corresponds to the oscillation section on the
CobWeb graph. Iterations from the requested interval [100, 400] are
shown in red, another interval [1, 100) is shown in white (completely
invisible).

Graphical solution. CobWeb plot could be treated as the graph-
ical tool for solution of Eq.(19). Figs. 3,4 represent intersection
of two graphs: linear function y=x and parabola y=F (x), when
F (x)=rx(1 − x) at fixed r (top right). Coordinates of two intersec-
tion points are presented numerically (bottom right):
x∗

1=0, x∗
2=0.723 at r=3.6, see Fig. 3,

x∗
1=0, x∗

2=0.740 at r=3.846, see Fig. 4.

Table 5. QUATTRO-20. Algorithm CobWeb.
void CobWeb(double x0, double rr, int iT)
{

double xCur0, yCur0, xCur1, yCur1;
xCur0= x0; yCur0=0.0;
for (int i=0; i<iT; i++)
{

yCur1 = rr * xCur0 * (1.0 - xCur0);
DrawVerLine(xCur0, yCur0, yCur1);
xCur1 = yCur1;
DrawHorLine(yCur1, xCur0, xCur1);
yCur0 = rr * xCur1 * (1.0 - xCur1);
DrawVerLine(xCur1, yCur1, yCur0);
xCur0 = yCur0;
DrawHorLine(yCur0, xCur1, xCur0);

}
}
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Fig. 3. QUATTRO-20. Main window for dependencies: Bifurcation diagram for sequence xt+1=rxt(1-xt) (top left), distribution of corresponding Lyapunov
index (bottom left) when r∈(0; 4). State marker (red vertical line) at r=3.6. CobWeb plot corresponds state distribution when r=3.6 (top right). Graphical
solution of Eq. x=3.6·x(1-x) (top right) related to CobWeb plot is presented in numerical form (bottom right).

Fig. 4. QUATTRO-20. Partial case of Fig. 3: r∈(3.79; 3.91). State marker (red vertical line) at r=3.846. CobWeb plot corresponds state distribution when
r=3.846 (top right). Graphical solution of Eq. x=3.6·x(1-x) (top right) related to CobWeb plot is presented in numerical form (bottom right).
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Fig. 5. QUATTRO-20. Realization of convergence conditions. Map
of first derivative of F (x), F 2(x), F 3(x), F 4(x) with respect to x
(from top to bottom). r∈(0;4) at horizontal axis and x∈(0;1) on verti-
cal axis. Red area represents the values of derivative in interval [0,1],
green - [-1,0) (convergence condition is satisfied) and blue - all the rest
(convergence condition is not satisfied).

Fig. 6. QUATTRO-20. Sequence xt+1=rxt(1-xt). Bifurcation dia-
gram coloured according to condition of convergence for first derivative
of F (x), F 2(x), F 3(x), F 4(x) with respect to x (from top to bottom),
see Fig. 5.
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Fig. 7. QUATTRO-20. Realization of convergence conditions. Partial
case of Fig. 5. Map of first derivative of F (x), F 2(x), F 3(x), F 4(x)
with respect to x (from top to bottom). r∈[3.4;4] at horizontal axis and
x∈[0;1] on vertical axis. Red area represents the values of derivative
in interval [0,1], green - [-1,0) (convergence condition is satisfied) and
blue - all the rest (convergence condition is not satisfied).

Fig. 8. QUATTRO-20. Partial case of Fig. 5. r∈(3.4;4). Bifurcation
diagram for sequence xt+1=rxt(1-xt) coloured according to condition
of convergence for first derivative of F (x), F 2(x), F 3(x), F 4(x) with
respect to x (from top to bottom).
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a) r=3.860 b) r=4.000.
Fig. 9. QUATTRO-20. xy distribution of sequence xt+1=rxt(1-xt) at fixed r. For both cases x0=0.3, 5000 iterations.

Generation of the recurrent sequence. According to requests
of users, some necessity to estimate chaotic behaviour of the recur-
rent sequence must be realized using simple "show as it is" tech-
nique.

Historically, the numerical analysis of recurrent sequences has
been recognized as a very difficult routine task. For example, in
[13], small and big perturbations of parameters of dynamic system
was provided manually, using standard growth model. Due to that,
all graphical visualization techniques are wellcome.

In QUATTRO-20, generation of big amount of data was realized
using previously described algorithm of Bifurcation diagram pre-
sented in Table 2. Fig. 9 represent the xy distribution of recur-
rent sequence xt+1=rxt(1-xt) at fixed r. For both cases iteration
starts from the same value x0=0.3, and 5000 iterations were pro-
vided. Fig. 9a shows far-away from chaotic distribution (r=3.860)
in interval approximately (0.05; 0.9) but not in (0;1). Fig. 9b shows
chaotic distribution (r=4.000) in interval (0;1). Recurrent sequence
when r→4 do not always converge. This result could be checked
using Bifurcation diagram - see Fig 3,4. All generated sequencies
in ASCII form could be output to file for additional analysis using
statistical packages.

Input parameters. Initially, all input parameters are presented
as routine parameters (by default) which allow receiving output of
previously defined task. Fig. 10 represents the screenshot of pa-
rameter window which is necessary to establish or to correct for
the routine of recurrent sequence generation. For example, x0=0.3,
rfixed=3.86. For recurrent sequence generation, number of itera-
tions is equal to iT =5000. For output to screen, requested interval
(horizontal coordinates) from iTfrom<5000 until iT could be used.

Fig. 10. QUATTRO-20. Parameters for recurrent sequence generation.

Also requested interval (vertical coordinates) from dYfromF ix=-
0.05 until dYuntilF ix=1.05 could be used or could be changed. All
initial parameters are presented for realization of digital or graph-
ical output without significant wasting of computer resourses. Next,
user can change the parameters due to any requests (initial value x0
in interval x∈(0;1), number of iterations, parameter r etc).

Fig. 11 represents the screenshot of parameter windows which
is necessary to establish or to correct for plotting Bifurcation di-
agram, distribution of Lyapunov index and CowWeb plot. Previ-
ously, all default parameters are presented at the initial stage of
start. For example, x0=0.3, parameter r must be established in some
interval: Rfrom=3.4, Runtil=4.01, step of changes Rstep=0.001.
For recurrent sequence generation, number of iterations is equal to
iT T T =400. For generation of recurrent sequence at current r, re-
quested interval (horizontal coordinates) from iT T Tfrom=100 to
iT T T must be used. In all cases, iT T Tfrom must be established as
non-zero parameter (always is necessary to avoid the initial part of
recurrent sequence). Requested interval (vertical coordinates for Bi-
furcation diagram) from dYfrom=-0.01 until dYuntil=1.01 could be
used or could be changed. Also requested interval (vertical coordi-
nates for distribution of Lyapunov plot) from dYfromLE=-2.1 until
dYuntilLE=1.05 could be used or could be changed. Next, user can
change the parameters due to any requests.

Fig. 11. QUATTRO-20. Parameters for Bifurcation diagram, distribu-
tion of Lyapunov index and CowWeb plot.
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3. Main results and discussion
The assessment should be divided into two parts.

Firstly, the analysis of the behaviour of recurrent sequence
xt+1=rxt(1-xt) for x∈(0,1) and for r∈(0,4] with a different step
can be done - see Figs. 3, 4. Bifurcation diagram can be drawn for
dynamic system to establish the transition conditions: from periodic
behaviour to chaotic behaviour. Bifurcation diagram in vertical di-
rection is related to the distribution of Lyapunov index (for the same
value of parameter r), otherwise, Bifurcation diagram in horizon-
tal direction is related to the CobWeb plot (for the same value of
x∈(0;1)).

Secondly, switching between several modes - periodic, chaotic
and period-doubling - must be established from Bifurcation dia-
gram. There is a number of functions approaching the chaos type
sequence via period doubling. Conclusion about switching between
modes must be verified and enforced by analysing the distribution
of Lyapunov index. Generation of chaotic states is related to the
Lyapunov index λ, which value increases from negative to positive.
For periodic modes, mentioned value is negative.

Establishing of chaos generation mode using parameter r=4.0 al-
lows us to receive the sequence of pseudo-random numbers, which
could be used in any place where unpredictability is welcome. [29].
Small changes in the initial value generate the big differences be-
tween predicted or guessed values. QUATTRO-20 could be used
for generation of pseudo-random numbers (not for cryptography,
for learning purposes only) and following numerical output to elec-
tronic storage. User can estimate the uniform or pseudo-uniform
distribution of recurrent sequence members from diagrams - see
Figs. 9a,b. In [29], a critical evaluation of several popular al-
gorithms for generation the pseudo-random numbers is presented.
Maps of first derivative of F (x), F 2(x), F 3(x), F 4(x) with respect
to x (see Fig. 5) give the additional information about behaviour of
recurrent sequence. For F 2(x), F 3(x), F 4(x) dependencies, first

active point is presented at r1=2.0 , second - at r2=3.2 (switching
between red and green colour means switching between negative
and positive values of the first derivative with respect to x). This
region of interest is far-away from chaotic region of recurrent se-
quence (where r>3.56, see Fig. 6).

Conclusions
Following practical results were obtained as presented below.

Advanced tool QUATTRO-20 for estimation the properties of re-
current sequence was created, tested and approved. QUATTRO-20
allows comparing the various aspects of chaotic system dynamics in
the framework of graphical models.

Traditional graphic models such as Bifurcation diagram, distribu-
tion of Lyapunov index, CobWeb plot (together with graphical solu-
tion x=F (x)) were used in the common graphical interface. Addi-
tional approaches such as maps of first derivative of F (x), F 2(x),
F 3(x), F 4(x) with respect to x were realized for estimation pur-
poses.

Generation of xy recurrent sequence of requested amount and fol-
lowing numerical output to electronic storage was realized.

Authors’ contributions
Jelena Kozmina formulated general idea, presented critical literature
review, derived mathematical formulas and validated results. Alytis
Gruodis created programming package QUATTRO-20 (source code
in Java), realized the graphical implementation and prepared de-
scription of program. Both authors reviewed and approved the final
manuscript.

Conflicts of interest
Authors declared at they have no conflicts of interest.

References
1. Cencini, M.; Cecconi, F; Vulpiani, A. (2009) Chaos. From Simple Models to Complex Systems - World Scientific, Singapore, 2009.
2. Klages, R. (2008) Introduction to Dynamical Systems. Lecture Notes for MAS424/MTHM021. Version 1.2 - Queen Mary, University of London, 2008.
3. Quinn, T. (2013) Population Dynamics. - In: Encyclopedia of Environmetrics. 2nd Ed. - John Wiley & Sons, Ltd. -

https://doi.org/10.1002/9780470057339.vap028.
4. Strogatz, S. H. (2015) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry and engineering. - CRC Press, 2015.
5. Uzokov, O.X. (2020) Chaos as the Basis of Order. Entropy as Measures of Chaos - International Journal of Advanced Research in Science, Engineering

and Technology 7(12) (2020) 16149-16154.
6. Bertels, K.; Neuberg, L.; Vassiliadis, S.; Pechanek, D. (2001) On Chaos and Neural Networks: The Backpropagation Paradigm - Artificial Intelligence

Review 15(2001)165-187.
7. Bacaer, N. (2011) A Short History of Mathematical Population Dynamics. - Springer-Verlag London Limited, 2011. - https://doi.org/10.1007/978-0-

85729-115-8-6.
8. May, R. (1974) Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos - Science 186(1974)645-7. -

https://doi.org/10.1126/science.186.4164.645.
9. Lorenz, E. N. (1990) Can chaos and intransitivity lead to interannual variability? - Tellus 42A (1990)378-389. - https://doi.org/10.1034/j.1600-

0870.1990.t01-2-00005.x
10. Heinz-Otto Peitgen, Hartmut Jurgens, Dietmar Saupe (1992) Chaos and Fractals. New Frontiers of Science. - Springer-Verlag.
11. Kozmina, Y. (2018) Discrete Analogue of the Verhulst Equation and Attractors. Methodological Aspects of Teaching - Innovative Infotechnologies for

Science, Business and Education 1(24) (2018) 3-12.
12. Petropoulou, E. N.(2010) A Discrete Equivalent of the Logistic Equation - Advances in Difference Equations 2010 (2010) 57073-57088 -

https://doi.org/10.1155/2010/457073.
13. Kalman, D. (2023) Verhulst Discrete Logistic Growth - Mathematics Magazine 96:3 (2023) 244-258 - https://doi.org/10.1080/0025570X.2023.2199676.
14. Conejero, J.A.; Garibo-i-Orts, O.; Lizama, C. (2023) Inferring the fractional nature of Wu Baleanu trajectories. - Nonlinear Dynamics 111(2023)

12421–12431 - https://doi.org/10.1007/s11071-023-08463-1.
15. Pikovsky A., Rosenblum M., and Kurths J. (2001) Synchronization. A Universal Concept in Nonlinear Sciences - Cambridge: Cambridge University

Press.
16. Afsar, O.; Eroglu, D.; Marwan, N.; Kurths, J. (2015) Scaling behaviour for recurrence-based measures at the edge of chaos. - Europhysics Letters -

112(2015)10005 - https://doi.org/112.10.1209/0295-5075/112/10005.

28



Jelena Kozmina et al. Applied Business: Issues & Solutions 1(2023)16–29

17. Kozmina, J.; Gruodis A. (2020) QUATTRO-20 - WinApi program. - https://github.com/Alytis/QUATTRO-20.
18. Alligood, K. T.; Sauer, T. D.; Yorke. J. A. (1996) Chaos. An introduction to dynamical systems.- Springer-Verlag, 1996.
19. Holmgren, R.A. (2000) A first course in discrete dynamical systems. Sec. Edition - Springer-Verlag, 2000.
20. Schuster, H. G.; Just, W. (2005) Deterministic Chaos. An Introduction - WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
21. Robinson, C. (1995) Dynamical systems. convergence, symbolic dynamics, and chaos.- CRC Press, 1995.
22. Cvitanovic, P.; Artuso, R.; Mainieri, R.; Tanner, G.; Vattay, G. (2011) Chaos: Classical and Quantum. Volume I: Deterministic Chaos - Gone With the

Wind press, Atlanta, 2011
23. Wiggins, S. (2000) Introduction to Applied Nonlinear Dynamical Systems and Chaos. Second Edition. - Springer, 2000. - 860 p.
24. Gesmann, M. (2012) Logistic map: Feigenbaum diagram in R. - https://magesblog.com/post/2012-03-17-logistic-map-feigenbaum-diagram/.
25. Kozmina, Y.; Gruodis, A. (2020) QUATTRO-20: advanced tool for estimation of the recurrent sequences - In: 18th International Conference "Informa-

tion Tehnologies and Management", April 23-24, 2020, ISMA University of Applied Science, Riga, Latvia.
26. Misiurewitz, M. (1981) Absolutely continuous measures for certain maps of an interval - Publications mathématiques de l’I.H.É.S. 53 (1981) 17-51. -

http://www.numdam.org/item?id=PMIHES_1981_53_17_0.
27. Huberman, B. A.; Rudnick, J. (1980) Scaling Behavior of Chaotic Flows - Phys. Rev. Lett. 45 (1980) 154. - https://doi.org/10.1103/PhysRevLett.45.154.
28. Layek, G. (2015) An Introduction to Dynamical Systems and Chaos. - https://doi.org/10.1007/978-81-322-2556-0.
29. Kozmina, Y.; Gruodis, A. (2019) Number generation based on the chaotic sequences - In: The 17th International Scientific Conference "Information

Technologies and Management - 2019", April 25-26, 2019, ISMA, Riga, Latvia - Nano Technologies and Computer Modelling (2019)17-18.

29


