
Aleksandr Igumenov et al. Applied Business: Issues & Solutions 1(2023)35–39

Article

Approach for Evaluating the Suitability of Programming Environments for Learning and
Developing Purposes

Aleksandr Igumenov∗, Jevgenijus Marinuškinas
Department of IT Technologies, Vilnius Business College,

Kalvarijų 129-401 Vilnius LT-08126, Lithuania
∗ Corresponding author, e-mail: aleksandr.igumenov@kolegija.lt

Received: 13 June 2023
Accepted: 28 June 2023
Online: 30 June 2023

Abstract. Currently, the ability to create various programs has become particularly relevant. The example of this
trend is the programs created for smartphones. In addition, the smartphone is becoming one of the tools for work
and is increasingly used in many activities, such as work activities, entertainment, education, and IoT.
As a result, there is an increasing need for modern, versatile, and efficient tools for creating such types of programs.
Also, development of such programs requires special programming skills. According to these facts we can see that
such situation evolves a big request for specialists in this field of activity.
One possible solution to this problem is the use of alternative development tools that do not require deep programm-
ing knowledge or skills, such as visual programming tools. These tools have the potential to create a new generation
of programmers who do not need to be experts in low-level programming. And these tools need to be properly
selected based on the requirements of the program.
This article aims to provide a systematic approach to evaluating the possibilities of any programming environment
software for learning and development purposes.

JEL: C61. Keywords: visual programming; block programming; traditional programming; imperative paradigm; logical
paradigm; functional paradigm; object-oriented paradigm; Thunkable; Xamarin; comparative analysis approach.
Citation: Aleksandr Igumenov, Jevgenijus Marinuškinas (2023) Approach for Evaluating the Suitability of
Programming Environments for Learning and Developing Purposes. – Applied Business: Issues & Solutions
1(2023)35–39 – ISSN 2783-6967.
https://doi.org/10.57005/ab.2023.1.5

Introduction

The process of software development is the complex one that in-
volves various tasks which must be completed to create a high-
quality and useful software product [1]. This process comprises
several steps, each of which has specific objectives and tasks. Dur-
ing the analysis step, relevant issues are examined, and requirements
are defined that are essential for the planned product development.
During the design step, the system architecture is created, techni-
cal and programming requirements are formulated, and components
and their interaction are described. In the coding step, programming
tasks are carried out, and during the testing step, testing of program
software is performed. The installation step involves tasks related
to the installation process of the developed software, such as set-
ting up a personal computer or server features, integrating operating
system capabilities into the project, and creating new libraries for
additional installation. Finally, the support step is carried out with
technical assistance and consulting services providing.

This article focuses on the program codding step, which is one
of the most critical steps during software development. In this step,
it is important to choose an appropriate programming language and
tools. In modern programming, there are two main categories of
program code development tools: text-based programming tools,
where the programmer writes language-specific program text in a
programming environment’s text editor, and visual programming
tools which allow programs to be created using drag-and-drop in-
terfaces.

This article examines tools for block programming, which allow
the creation of programs using pre-made visual blocks and their
combinations within a programming environment. It is important to
note that block programming is a specific type of visual programm-
ing that has its own specifics and should not be confused with other
forms of visual programming. As Alexander Repenning notes [2],

using the term block programming as a synonym for visual pro-
gramming is not equivalent, which is why the specific term of block
programming is used in this work to avoid ambiguity and specifi-
cally refer to the type of programming language being used.

This work is devoted to:
1) propose an approach for comparative analysis of program de-

velopment solutions,
2) propose a specific program architecture and design for verifi-

cation of any of program development solutions.

1. Literature review
When speaking about the traditional programming, it should be
noted that such activity requires specific technical knowledge and
skills. One of the main skills worth mentioning is understanding
the principles and syntax of programming environments and pro-
gramming languages (C++, Java, C#, etc.). To create a program
using a textual programming language, in most cases, a programm-
ing environment and a set of supporting tools are required. The pro-
gramming environment is often made from many different elements,
and its main workspace is a type of specific text editor. Program
text is written in it, which is later compiled or interpreted depend-
ing on the programming language and used environment. Modern
programming environments provide users with a wide range of pos-
sibilities for writing program text and correcting errors. Some of
them have functionality for visual elements designed for the screen
of the program.

Traditional programming can be classified into several widely
used programming paradigms. One possible classification was
made by Kurt Nørmark [3], which includes: the imperative
paradigm, logical paradigm, functional paradigm, and object-
oriented paradigm. Currently, the most widely used paradigms are
the object-oriented and imperative paradigms (specifically, a vari-

35

Aleksandr Igumenov et al. Applied Business: Issues & Solutions 1(2023)35–39

ation of the imperative paradigm called procedural programming).
Object-oriented programming uses the concepts of classes and ob-
jects to create models that are based on the real world [4].

The essential difference of the procedural programming
paradigm is that, unlike object-oriented programming, it uses a se-
quence of instructions. Procedural programming is dependent on
procedures executed sequentially [4]. As a result, it is not always
suitable for some modern more complex programs.

Regarding both paradigms mentioned, it should be noted that the
dominant paradigm currently is object-oriented. It can be said that
the object-oriented paradigm provides the programmer with more
flexibility for software creation. The program code created based on
this paradigm can be reused without additional changes (reusage of
public or standard libraries) - where it may be necessary to be used
for a programming task, and it is also significantly safer because it
gives control for data access outside of the object [4].

One possible solution to this problem is the use of alternative de-
velopment tools that do not require deep programming knowledge or
skills, such as visual programming tools. These tools have the po-
tential to create a new generation of programmers who do not need
to be experts in low-level programming [5].

Block programming is also influenced by many different factors.
One of these factors was mentioned earlier, the need of knowledge
of the programming languages for developing the applications using
any traditional programming languages. Block programming tools
solve this problem by providing a more understandable and simpler
programming environment interface. Such types of platforms re-
quire minimal programming knowledge. When working with this
block programming tool, the user operates with visual blocks that
can be easily composed into one not always complicated program.
The programming tool has special mechanisms, such as animat-
ing cursors or block coloring, which indicate the compatibility of
blocks, according to Alexander Repenning [2], and at the same time
simplify the process of creating a program.

Block programming provides opportunities to apply both previ-
ously mentioned programming paradigms - object-oriented and pro-
cedural or certain combinations thereof, depending on the specific

tool and programming environment used. Most often, objects and
actions performed with them are manipulated using the drag-and-
drop principle of the user interface. When programming in a Block
programming environment, the ability to manipulate different pro-
gram blocks or prepared objects by combining them into complex
combinations is provided. A typical example of such type of a
programming environment could be Thunkable [6] - a modern pro-
gramming environment designed to create programs for mobile de-
vices with Android OS.

It is also important not to forget another important feature of such
type of programming. Usually, programming tools based on the
block principle are classified as SaaS (Software as a service) prod-
ucts. They operate on the principle of cloud computing, and unlike
traditional programming tools, do not require the user to perform
an installation process on their computer, operating through a web
browser instead. As a result, the preparation process is most sim-
plified and is only a request of creating a user account. Moreover,
it should be emphasized that traditional programming tools may re-
quire considerable computing power and technical resources, while
tools created based on cloud computing place lower demands on
user hardware and can theoretically be accessed from any type of
computer (personal computer, nettop, ultratop, tablet, mobile etc.)
with a browser and access to internet. Additionally, as shown by the
statistics in Fig. 1 [7], professional tools are losing popularity, and
other tools (including block programming) are taking an increasing
share of the market, from 0% in 2019 to 10% in 2021.

3. Approach Procedure
To determine the effectiveness of any types of programming solu-
tions, it was necessary to describe guidelines for a comparative anal-
ysis approach that would be applied during the implementation of
the practical part of the analysis. It should be noted that we pro-
pose this approach which applies to mobile program developed us-
ing both a traditional programming and a block programming soft-
ware’s. To analyse the suitability of a specific solution, the following
characteristics were compared (all values were estimated using a

Fig. 1. The change in popularity of cross-platform mobile app development tools between 2019 and 2021. Adapted according to Ref. [7].

36

Aleksandr Igumenov et al. Applied Business: Issues & Solutions 1(2023)35–39

timer).
1. The time needed to develop methods (functions, procedures).
2. Time spent creating loops (e.g., while, for).
3. Time spent describing variables.
4. Time taken to write control statements.
5. Time taken to write text management/processing statements.
6. Time taken to write logical statements.
7. Time taken to add/edit various visual elements.

In addition to the usual creation of logical functional elements, the
programming of visual user interface elements is also evaluated in
terms of development time: i) Screen, ii) Button, iii) Label, iv)
TextBox, v) DropDownList.
To ensure objectivity in the evaluation results, we propose to assess
each visual interface or programmable element using three different
time measurement factors.

1. Minimum time: The minimum time achieved, measured after
creating the mobile program.

2. Maximum time: The maximum time achieved, measured at
the initial stages of learning to use the solution.

3. Typical time: The average time it usually takes to act on the
workflow. This result is obtained by adding and averaging the
three randomly measured times.

The implementation of these functions and the development of the
mobile program code are guided by methodologies aimed at writing
efficient and fast code [8]. Furthermore, it is intended to validate
the applicability of best practices and methodologies described by
professional software engineer V. Podkamennyi [9].

1. The DRY methodology (Don’t Repeat Yourself), which is all
about avoiding repeated code development, i.e., using as many
components as possible that are versatile and reusable.

2. The KISS methodology (Keep It Simple, Stupid), which is
based on simplicity and code readability, avoids the creation
of large and complex code constructs.

Since the development solutions being evaluated are different, it has
been decided to assess the applicability of the methodologies (DRY
and KISS) based on their levels of utilization.

1. Full: The development solution enables the comprehensive
application of the principles and best practices of the respec-
tive methodology.

2. Partial: The development solution allows for the partial appli-
cation of the principles and best practices, but there may be
certain limitations or constraints that hinder full implementa-
tion.

3. None: The development solution does not provide the neces-
sary features or capabilities to support the application of the
principles and best practices associated with the methodology.

The whole program creation process was divided into several steps
for further investigation.

1. Preparation (program development solution installation or ac-
count creation).

2. Designing the user interface.
3. Programming the elements or blocks of the mobile program.
4. Installing and testing of the mobile program.

To evaluate the effectiveness of this approach for evaluating of
development solutions, a mobile program called SmartHouseBud-
get will be developed based on the client-server architecture. This
mobile program aims to provide a platform for recording housing
costs, catering to users who own one or more properties. However,
the approach does not include the server programming part because
it is only an API tool.

The mobile program will store client data, including property de-
tails and expenses, on the server. This allows the installation of
the program on multiple devices, ensuring real-time synchroniza-
tion of data. Customer account information, such as email address
and password, will also be stored on the server, enabling individual
customer logins.

The program will enable users to manage property-related data,
including payments, as well as add and delete information about
different apartments. It will also provide visual representations,
such as graphs, to facilitate the analysis of the entered data.

By implementing this mobile program, it will be possible to test
and compare the performance of the any program development so-
lutions in developing software of medium complexity.

4. Program Requirements and Database Model
The development of the SmartHouseBudget mobile program for the
approach requires the formulation of requirements for the program.
Clearly defined and exhaustive requirements are essential for the
program of the waterfall approach, contribute to the quality of the
final result, and facilitate the future development of the program’s
functionality. The two main types of requirements that are the focus
of this paper are functional and non-functional requirements.

4.1 Functional requirements
The program will work with three main types of objects: User,
Property, and Cost. Each of these objects has the following func-
tional requirements. Requirements for the User object are presented
as follows.

1. The user registration process requires the user to enter their
first name, last name, password, email address and phone
number.

2. All fields have a maximum length of 30 characters and are
mandatory. If any of these rules are violated, an error message
will be displayed when the registration button is pressed.

3. The login process requires the user to enter their email address
and password. An error message will be displayed if there is
an error or if the data is not entered.

4. Upon successful login, the user will be redirected to the Prop-
erty List window.

Requirements for the Property object are presented as follows.
1. Adding a Property requires the entry of an address (up to 100

characters), which is mandatory, and an optional name (up to
200 characters). An error message will be displayed when the
rules are not followed.

2. Deleting a Property object can be done by a long click, which
will display a confirmation message.

3. Deleting a Property object also deletes all associated spend
records and refreshes the list.

4. Clicking on a Property object in the list will display the asso-
ciated Cost records.

Requirements for the Cost object are presented as follows.
1. Adding a new Cost object requires entering its Name (up to

100 characters), Comments (optional field, up to 200 charac-
ters), Amount, selecting the Date and Time from the drop-
down list, and selecting the Category and Subcategory from
the drop-down lists. An error message is displayed if any of
the rules are violated.

2. A Cost object can be deleted by a long click, which displays a
confirmation window.

37

Aleksandr Igumenov et al. Applied Business: Issues & Solutions 1(2023)35–39

Fig. 2. Screens - logic diagram of the program.

3. The list is updated when an object is deleted.
4. Updating an item allows you to change the title, comments,

amount, date and time. The same rules apply as in the Add
Item window.

General functional requirements are presented as follows.
1. The ’Back’ system button allows to return to the previous

screen.
2. The Real Property objects screen displays a graph with the to-

tal amounts calculated for each month since the beginning of
the current year.

3. The Costs records screen displays a graph controlled by two
drop down lists - Period and Category. By default, the pe-
riod selected is ’Month’ and no category (’-’). The graph will
then show the expenses for the current month by category. If
the period is changed (another option is the current year), the
graph will be updated. If a category is selected, the graph will
be displayed by sub-category. The drop down lists also affect
the list of expense records.

4. The Costs record screen also includes a section called Costs
Summary, which displays the total amount for the selected pe-
riod.

4.2 Non-functional requirements
In addition to the aforementioned functional requirements, the pro-
gram is subject to the following non-functional requirements.

1. Responsive design (adapted to the screen size of the mobile
device).

2. Modern and visually appealing user interface.
3. Intuitive program control.
4. High contrast colors.
5. Compatibility of the program with both new and old devices

(minimum Android OS version 8.0).
6. Graphical user interface in Lithuanian language.
7. Data access via the Internet.
8. Data storage on the cloud or common web server.
9. Secure and encrypted data transmission with the server.

4.3. The structure of the program
Initially, we need to determine the functionality of the program, and
since it is designed for a mobile phone, we should divide the func-
tionality into relevant screens as presented in Fig. 2.

4.4. Database structure
Fig. 3 represents the inner structure of database designed for sup-
porting the solution and storing the data. Direct relations were
organized between tables Users and Estate Objects, Expences and
Estate Objects, Expences and SubCategories, Categories and Sub-
Categories. According to the best database traditions, each record
in the table starts from unique item Id.

5. Main results
The article proposes an approach for evaluating the effectiveness of
programming development solutions, focusing specifically on mo-
bile programs created by any of presented programming software.

1. The approach involves a comparative analysis of various char-
acteristics such as development time for methods, loops, variables,
control statements, text management/processing statements, logi-
cal statements and visual elements such as screens, buttons, labels,
textboxes and dropdown lists.

2. To ensure objectivity, each visual interface or programmable
element is evaluated using three different time measurement factors:
minimum time, maximum time and typical time.

3. Function implementation and code development follow ap-
proach aimed at writing efficient and fast code, specifically the DRY
and KISS methodologies. These methodologies emphasise reusabil-
ity, simplicity and code readability.

4. The applicability of the DRY and KISS methodologies is as-
sessed based on their level of use: full, partial or none, depending
on the ability of the development solution to support the principles
and best practices associated with each methodology.

5. The program development process is divided into preparation,
design of the user interface, programming of the elements or blocks,
and installation and testing of the mobile program.

6. A mobile program called SmartHouseBudget, based on
a client-server architecture, is being developed to evaluate the
effectiveness of the approach. This program focuses on the record-
ing of housing costs and allows the installation of several devices
with real-time data synchronisation. It allows users to manage
property-related data, make payments and provide visual represen-
tations for data analysis.

By implementing the SmartHouseBudget program and applying
the proposed approach, the performance and suitability of different
program development solutions can be compared and evaluated in
the context of medium complexity software development.

Fig. 3. Database structure.

38

Aleksandr Igumenov et al. Applied Business: Issues & Solutions 1(2023)35–39

Conclusions
This article presents an approach for evaluating and comparing mo-
bile program development solutions. The approach includes analy-
sis of development time, adherence to best practices, and practical
implementation. By assessing coding task time and considering the
application of DRY and KISS methodologies, developers can gain
insight into the efficiency and industry compliance. The approach
usability proposed to apply through the development of a mobile
program called SmartHouseBudget, which provides a real-world us-
age context for evaluating different solutions.

Abbreviations
DRY - Don’t Repeat Yourself
IoT - Internet of Things
KISS - Keep It Simple, Stupid
SaaS - Software as a Service
STEAM - Science, Technology, Engineering, Arts, Math.

The STEAM Open Access Centre

Acknowledgements
Authors would thank to Vilnius University STEAM Center. Part of this ar-
ticle was prepared using the material of Final thesis which was successfully
defended by Jevgenijus Marinuškinas at Vilnius Business College in June
2021.

Authors’ contributions
Aleksandr Igumenov and Jevgenijus Marinuškinas initiated research concept
and design, Jevgenijus Marinuškinas collected and analysed data. Both au-
thors interpreted data and prepared the manuscript. Jevgenijus Marinuškinas
prepared the theoretical overview, approach and requirements, whilst both
authors prepared other parts of the manuscript. Aleksandr Igumenov pre-
pared and Jevgenijus Marinuškinas reviewed the initial draft of the manu-
script. Both authors reviewed and approved the final manuscript.

Conflicts of interest
All authors declared at they have no conflicts of interest.

References
1. Shylesh, S. (2017) A study of software development life cycle process models. - SSRN Electronic Journal - http://dx.doi.org/10.2139/ssrn.2988291.
2. Repenning, A. (2017) Moving beyond syntax: Lessons from 20 years of blocks programing in agentsheets - Journal of Visual Languages and Sentient

Systems 3(1)(2017) 68-91 - https://doi.org/10.18293/vlss2017-010.
3. Nørmark, K. (2013) Functional Programming in Scheme With Web Programming Examples - Functional Programming in Scheme. - Department of

Computer Science, Aalborg University, Denmark, 2013. - https://homes.cs.aau.dk/ normark/prog3-03/html/notes/top-level-title-page.html, retrieved
May 1, 2023.

4. Adhkari, B. (2016) Object Oriented Programming Vs Procedural Programming. - https://doi.org/10.13140/RG.2.2.33443.45604.
5. Bernard, A. (2020) Is low-code/no-code the future of application development? - TechRepublic. TechnologyAdvice -

https://www.techrepublic.com/article/is-low-codeno-code-the-future-of-application-development/, retrieved May 1, 2023.
6. Friedman, M. et al (2010) Best no code app builder: No code app creation, Thunkable. - Thunkable, Inc. - https://thunkable.com/, retrieved May 1,

2023.
7. Vailshery, L.S. (2022) Cross-platform mobile frameworks used by global developers 2021. - Statista. - https://www.statista.com/statistics/869224/

worldwide-software-developer-working-hours/, retrieved May 1, 2023.
8. Kartik ; Shantnu (2020) 9 techniques to write your code efficiently - https://blogspot.com. - https://patataeater.blogspot.com/2020/08/how-to-write-

efficient-and-faster-code.html, retrieved May 1, 2023.
9. Podkamennyi, V. (2020) Principles of Software Engineering. - In: Podkamennyi V. Software development. - https://vpodk.com/principles-of-software-

engineering/, retrieved May 1, 2023.

39

